### **CETIFICATION**

SDG No:

JC22206

Humacao, PR

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

**SUMMARY:** 

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken June 10-14, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the ABN TCL Special List (1,4-Dioxane and Naphthalene were analyzed following the SIM technique); TCL pesticides list; and for low molecular weight alcohols (LMWA) the results were reported under SDG No.: JC22206. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

| SAMPLE ID  | SAMPLE<br>DESCRIPTION | MATRIX      | ANALYSIS PERFORMED                                                                  |
|------------|-----------------------|-------------|-------------------------------------------------------------------------------------|
| JC22206-1  | MW-17                 | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); LMWA                      |
| JC22206-1D | MW-17 MSD             | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); LMWA                      |
| JC22206-1S | MW-17 MS              | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); LMWA                      |
| JC22206-2  | MW-18                 | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); LMWA                      |
| JC22206-3  | MW-7                  | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); LMWA                      |
| JC22206-4  | S-36                  | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |
| JC22206-5  | S-36D                 | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |
| JC22206-6  | MW-11                 | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |
| JC22206-7  | S-37                  | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |
| JC22206-8  | S-32                  | Groundwater | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |

| SAMPLE ID  | SAMPLE<br>DESCRIPTION | MATRIX                  | ANALYSIS PERFORMED                                                                  |
|------------|-----------------------|-------------------------|-------------------------------------------------------------------------------------|
| JC22206-9  | RA-10S                | Groundwater             | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |
| JC22206-9D | RA-10S MSD            | Groundwater             | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |
| JC22206-9S | RA-10S MS             | Groundwater             | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |
| JC22206-10 | RA-10D                | Groundwater             | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |
| JC22206-11 | EB-061416             | AQ – Equipment<br>Blank | ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA |

Patiel Infant Méndez LIC # 1888

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature: Date:

## Report of Analysis

By

BP

Page 1 of 3

Client Sample ID: MW-17

Lab Sample ID: JC22206-1

Matrix:

AQ - Ground Water

DF

1

Prep Date

06/16/16

Date Sampled: 06/10/16 06/15/16

Method:

SW846 8270D SW846 3510C

Date Received: Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch OP94835

Q

**Analytical Batch** EF6662

Run #1 Run #2

Run #1

Run #2

Initial Volume

File ID

F158276.D

Final Volume

Analyzed

06/23/16

930 ml

1.0 ml

ABN TCL Special List.

| CAS No.   | Compound                   | Result | RL  | MDL    | Unit |
|-----------|----------------------------|--------|-----|--------|------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.4 | 0.88   | ug/l |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.4 | 0.96   | ug/l |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.2 | 1.4    | ug/l |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.4 | 2.6    | ug/l |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 11  | 1.7    | ug/l |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.4 | 1.4    | ug/l |
| 95-48-7   | 2-Methylphenol             | ND     | 2.2 | 0.95   | ug/l |
|           | 3&4-Methylphenol           | ND     | 2.2 | 0.95   | ug/l |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.4 | 1.0    | ug/l |
| 100-02-7  | 4-Nitrophenol              | ND     | 11  | 1.2    | ug/l |
| 87-86-5   | Pentachlorophenol          | ND     | 5.4 | 1.5    | ug/l |
| 108-95-2  | Phenol                     | ND     | 2.2 | 0.42   | ug/l |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.4 | 1.6    | ug/l |
| 95-95-4   | 2,4,5-Trichlorophenol      | · ND   | 5.4 | 1.4    | ug/t |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.4 | 0.99   | ug/f |
| 83-32-9   | Acenaphthene               | ND     | 1.1 | 0.21   | ug/l |
| 208-96-8  | Acenaphthylene             | ND     | 1.1 | 0.15   | ug/l |
| 98-86-2   | Acetophenone               | ND     | 2.2 | 0.22   | ug/l |
| 120-12-7  | Anthracene                 | ND     | 1.1 | 0.23   | ug/l |
| 1912-24-9 | Atrazine                   | ND     | 2.2 | 0.48   | ug/l |
| 100-52-7  | Benzaldehyde               | ND     | 5.4 | 0.31   | ug/l |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.1 | 0.22   | ug/l |
| 50-32-8   | Benzo(a) pyrene            | ND     | 1.1 | 0.23   | ug/l |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.1 | 0.22   | ug/l |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.1 | 0.37   | ug/l |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.1 | 0.22   | ug/l |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.2 | . 0.43 | ug/l |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.2 | 0.49   | υg/l |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.1 | 0.23   | ug/l |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.2 | 0.25   | ug/l |
| 106-47-8  | 4-Chloroaniline            | 7.5    | 5.4 | 0.37   | ug/l |
| 86-74-8   | Carbazole                  | ND     | 1.1 | 0.25   | ug/I |
|           |                            |        |     |        |      |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

# 4

## Report of Analysis

| Client Sample ID: | MW-17   |
|-------------------|---------|
| Lab Sample ID:    | TC22206 |

JC22206-1 AQ - Ground Water Date Sampled: 06/10/16
Date Received: 06/15/16
Percent Solids: n/a

Matrix: Method:

Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

ABN TCL Special List

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q |
|-----------|-----------------------------|--------|--------|------|-------|---|
| 105-60-2  | Caprolactam                 | ND     | 2.2    | 0.70 | ug/l  |   |
| 218-01-9  | Chrysene                    | ND     | 1.1    | 0.19 | ug/l  |   |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.2    | 0.30 | ug/l  |   |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 2.2    | 0.27 | ug/l  |   |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.2    | 0.43 | ug/l  |   |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.2    | 0.39 | ug/l  |   |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.1    | 0.59 | ug/l  |   |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 1.1    | 0.51 | ug/l  |   |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.2    | 0.55 | ug/l  |   |
| 123-91-1  | 1,4-Dioxane                 | 13.6   | 1.1    | 0.71 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene      | ND     | 1.1    | 0.36 | ug/l  |   |
| 132-64-9  | Dibenzofuran                | ND     | 5.4    | 0.24 | ug/l  |   |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.2    | 0.53 | ug/l  |   |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.2    | 0.25 | ug/l  |   |
| 84-66-2   | Diethyl phthalate           | ND     | 2.2    | 0.28 | ug/I  |   |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.2    | 0.23 | ug/l  |   |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 2.2    | 1.8  | ug/l  |   |
| 206-44-0  | Fluoranthene                | ND     | 1.1    | 0.18 | ug/l  |   |
| 86-73-7   | Fluorene                    | ND     | 1.1    | 0.18 | ug/l  |   |
| 118-74-1  | Hexachlorobenzene           | ND     | 1.1    | 0.35 | ug/I  |   |
| 87-68-3   | Hexachlorobutadiene -       | ND     | 1.1    | 0.53 | ug/l  |   |
| 77-47-4   | Hexachlorocyclopentadiene   | · ND   | 11     | 3.0  | ug/l  |   |
| 67-72-1   | Hexachloroethane.           | ND     | 2.2    | 0.42 | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.1    | 0.36 | ug/l  |   |
| 78-59-1   | Isophorone                  | ND     | 2.2    | 0.30 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 1.1    | 0.28 | ug/l  |   |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.1    | 0.23 | ug/l  |   |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.4    | 0.30 | ug/l  |   |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.4    | 0.42 | ug/l  |   |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.4    | 0.47 | ug/l  |   |
| 98-95-3   | Nitrobenzene                | ND     | 2.2    | 0.69 | ug/l  |   |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.2    | 0.52 | ug/l  |   |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.4    | 0.24 | ug/l  |   |
| 85-01-8   | Phenanthrene                | ND     | 1.1    | 0.19 | ug/l  |   |
| 129-00-0  | Pyrene                      | ND     | 1.1    | 0.24 | ug/l  |   |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.2    | 0.40 | ug/l  |   |
| CAS No.   | Surrogate Recoveries        | Run#1  | Run# 2 | Lim  | its   |   |
| 367-12-4  | 2-Fluorophenol              | 44%    |        | 14-8 | 8%    |   |

ND = Not detected

 $MDL = Method\ Detection\ Limit$ 

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW-17

Lab Sample ID: JC22206-1 Matrix:

AQ - Ground Water SW846 8270D SW846 3510C

Date Received: 06/15/16 Percent Solids: n/a

Date Sampled: 06/10/16

Method: Project:

BMSMC, Building 5 Area, PR

ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run#1 | Run# 2 | Limits  |
|-----------|----------------------|-------|--------|---------|
| 4165-62-2 | Phenol-d5            | 28%   |        | 10-110% |
| 118-79-6  | 2,4,6-Tribromophenol | 86%   |        | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 64%   |        | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 71%   |        | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 74%   |        | 10-126% |



E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

## Report of Analysis

Page 1 of 1

Client Sample ID: MW-17

Lab. Sample ID:

JC22206-1

Date Sampled: 06/10/16

Matrix: Method: AQ - Ground Water SW846 8270D BY SIM SW846 3510C

Date Received: 06/15/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

| D ##             | File ID   | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch |
|------------------|-----------|----|----------|----|-----------|------------|------------------|
| Run #1<br>Run #2 | 4M66456.D | 1  | 06/29/16 | LK | 06/16/16  | OP94835A   | E4M2988          |

| Run #1<br>Run #2 | Initial Volume<br>930 ml | Final Volume<br>1.0 ml |        |    |     |       |   |  | _ |
|------------------|--------------------------|------------------------|--------|----|-----|-------|---|--|---|
| CAS No.          | Compound                 |                        | Resuit | RL | MDL | Units | Q |  |   |

| 91-20-3 Naph     | thalene          | ND     | 0.11   | 0.032 ug/ |  |
|------------------|------------------|--------|--------|-----------|--|
| CAS No. Surro    | ogate Recoveries | Run# I | Run# 2 | Limits    |  |
| 4165-60-0 Nitrol | benzene-d5       | 57%    |        | 24-125%   |  |
| 321-60-8 2-Flu   | orobiphenyl      | 52%    |        | 19-127%   |  |
| 1718-51-0 Terph  | nenyl-d14        | 63%    |        | 10-119%   |  |

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

## Report of Analysis

Page 1 of 1

Client Sample ID: MW-17

Lab Sample ID: JC22206-1

Matrix: Method: AQ - Ground Water

SW846-8015C (DAI)

Date Sampled: Date Received:

06/10/16 06/15/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

File ID DF Ву Prep Date Prep Batch **Analytical Batch** Analyzed Run #1 GH105526.D 1 06/16/16 XPL GGH5324 n/a

Run #2

### Low Molecular Alcohol List

| CAS No.                                                        | Compound                                                                                      | Result                     | RL                              | MDL                              | Units                                        | Q |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------|---------------------------------|----------------------------------|----------------------------------------------|---|
| 64-17-5<br>78-83-1<br>67-63-0<br>71-23-8<br>71-36-3<br>78-92-2 | Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol | ND<br>ND<br>ND<br>ND<br>ND | 100<br>100<br>100<br>100<br>100 | 55<br>36<br>68<br>43<br>87<br>66 | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l |   |
| 67-56-1                                                        | Methanol                                                                                      | ND                         | 200                             | 71                               | ug/l                                         |   |
| CAS No.                                                        | Surrogate Recoveries                                                                          | Run#1                      | Run# 2                          | Lim                              | its                                          |   |
| 111-27-3<br>111-27-3                                           | Hexanol<br>Hexanol                                                                            | 81%<br>87%                 |                                 |                                  | 45%<br>45%                                   |   |





MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

By

BP.

06/23/16

Prep Date

06/16/16

Page 1 of 3

| Client Sample ID: | MW-18     |
|-------------------|-----------|
| Lab Sample ID:    | JC22206-2 |

F158277.D

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: 06/10/16

Q

Date Received: 06/15/16 Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

File ID DF Analyzed

**Analytical Batch** Prep Batch OP94835 EF6662

Run #1 Run #2

Initial Volume Final Volume 920 ml 1.0 ml

1

Run #1 Run #2

ABN TCL Special List

| CAS No.   | Compound                   | Result | RL  | MDL  | Unit |
|-----------|----------------------------|--------|-----|------|------|
| 95-57-8   | 2-Chlorophenal             | ND     | 5.4 | 0.89 | ug/l |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.4 | 0.97 | ug/l |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.2 | 1.4  | ug/l |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.4 | 2.7  | ug/l |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 11  | 1.7  | ug/l |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.4 | 1.4  | ug/l |
| 95-48-7   | 2-Methylphenol             | ND     | 2.2 | 0.97 | ug/l |
|           | 3&4-Methylphenol           | ND     | 2.2 | 0.96 | ug/l |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.4 | 1.0  | ug/l |
| 100-02-7  | 4-Nitrophenol              | ND     | 11  | 1.3  | ug/l |
| 87-86-5   | Pentachlorophenol          | ND     | 5.4 | 1.5  | ug/l |
| 108-95-2  | Phenoi                     | ND     | 2.2 | 0.43 | ug/l |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.4 | 1.6  | ug/l |
| .95-95-4  | 2,4,5-Trichlorophenol      | ND     | 5.4 | 1.4  | ug/l |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.4 | 1.0  | ug/l |
| 83-32-9   | Acenaphthene               | ND     | 1.1 | 0.21 | ug/l |
| 208-96-8  | Acenaphthylene             | ND     | 1.1 | 0.15 | ug/l |
| 98-86-2   | Acetophenone               | ND     | 2.2 | 0.23 | ug/l |
| 120-12-7  | Anthracene                 | ND     | 1.1 | 0.23 | ug/l |
| 1912-24-9 | Atrazine                   | ND     | 2.2 | 0.49 | ug/l |
| 100-52-7  | Benzaldehyde               | ND     | 5.4 | 0.31 | ug/l |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.1 | 0.22 | ug/l |
| 50-32-8   | Benzo(a)pyrene             | ND     | 1.1 | 0.23 | ug/l |
| 205-99-2  | Benzo(b) fluoranthene      | ND     | 1.1 | 0.22 | ug/i |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.1 | 0.37 | ug/l |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.1 | 0.22 | ug/l |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.2 | 0.44 | ug/l |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.2 | 0.50 | ug/l |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.1 | 0.23 | ug/l |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.2 | 0.26 | ug/l |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.4 | 0.37 | ug/l |
| 86-74-8   | Carbazole                  | ND     | 1.1 | 0.25 | ug/l |
|           |                            |        |     |      |      |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: MW-18

Lab Sample ID: JC22206-2

Matrix: Method:

Project:

AQ - Ground Water

BMSMC, Building 5 Area, PR

SW846 8270D SW846 3510C

06/15/16 Date Received:

Percent Solids: n/a

Date Sampled: 06/10/16

ABN TCL Special List

| CAS No.   | Compound                    | Result | RL     | MDL  | Units        | Q    |
|-----------|-----------------------------|--------|--------|------|--------------|------|
| 105-60-2  | Caprolactam                 | ND     | 2.2    | 0.71 | ug/l         |      |
| 218-01-9  | Chrysene                    | ND     | 1.1    | 0.19 | ug/l         |      |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.2    | 0.30 | ug/l         |      |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 2.2    | 0.27 | ug/l         |      |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.2    | 0.44 | ug/l         |      |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.2    | 0.40 | ug/l         |      |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.1    | 0.60 | ug/l         |      |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 1.1    | 0.52 | ug/l         |      |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.2    | 0.55 | ug/l         |      |
| 53-70-3   | Dibenzo(a,h)anthracene      | ND     | 1.1    | 0.36 | ug/l         |      |
| 132-64-9  | Dibenzofuran                | ND     | 5.4    | 0.24 | ug/l         |      |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.2    | 0.54 | ug/l         |      |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.2    | 0.25 | ug/l         |      |
| 84-66-2   | Diethyl phthalate           | ND     | 2.2    | 0.28 | ug/l         |      |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.2    | 0.24 | ug/l         |      |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 2.2    | 1.8  | ug/l         |      |
| 206-44-0  | Fluoranthene                | ND     | 1.1    | 0.18 | ug/l         |      |
| 86-73-7   | Fluorene                    | 0.77   | 1.1    | 0.19 | ug/l         | J    |
| 118-74-1  | Hexachiorobenzene           | ND     | 1.1    |      |              | ,    |
| 87-68-3   | Hexachlorobutadiene         | ND     | 1.1    | 0.53 | ug/l<br>ug/l |      |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 11     | 3.0  | ug/l         |      |
| 67-72-1   | Hexachloroethane            | ND     | 2.2    | 0.42 | ug/l         |      |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.1    | 0.36 | ug/l         |      |
| 78-59-1   | Isophorone                  | ND     | 2.2    | 0.30 | ug/l         |      |
| 90-12-0   | 1-Methylnaphthalene         | 2.6    | 1.1    | 0.29 | ug/l         |      |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.1    | 0.23 | ug/l         |      |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.4    | 0.30 | ug/l         |      |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.4    | 0.42 | ug/l         |      |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.4    | 0.48 | ug/l         |      |
| 98-95-3   | Nitrobenzene                | ND     | 2.2    | 0.70 | ug/l         |      |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.2    | 0.52 | ug/l         |      |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.4    | 0.24 | ug/l         | /    |
| 85-01-8   | Phenanthrene                | ND     | 1.1    | 0.19 | ug/l         | 1    |
| 129-00-0  | Pyrene                      | ND     | 1.1    | 0.24 | ug/l         | 19   |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.2    | 0.40 | ug/l         | 3/1  |
| 36 24     |                             |        |        | 0.10 | -6.          | 39 0 |
| CAS No.   | Surrogate Recoveries        | Run#1  | Run# 2 | Lim  | its          | 0 1  |
| 367-12-4  | 2-Fluorophenol              | 50%    |        | 14-8 | 8%           | 11/1 |
| 4165-62-2 | Phenol-d5                   | 34%    |        | 10-1 |              |      |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

ifael Infante Méndez IC # 188

Page 3 of 3

Client Sample ID: MW-18 Lab Sample ID:

JC22206-2

06/10/16 Date Sampled: Date Received: 06/15/16

Matrix: Method: AQ - Ground Water SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run#1 | Run# 2 | Limits  |
|-----------|----------------------|-------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 104%  |        | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 74%   |        | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 83%   |        | 35-119% |
| 1718-51-0 | Terphenyi-d14        | 83%   |        | 10-126% |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

Ву

LK

Page 1 of 1

Client Sample ID: MW-18 Lab Sample ID: JC22206-2

File ID

4M66457.D

Matrix: Method: AQ - Ground Water

DF

1

SW846 8270D BY SIM SW846 3510C

Analyzed

06/29/16

Date Sampled: Date Received:

06/10/16 06/15/16

Percent Solids:

Project:

BMSMC, Building 5 Area, PR

Prep Date Prep Batch **Analytical Batch** 06/16/16 OP94835A E4M2988

Run #1 Run #2

Final Volume Initial Volume Run #1 920 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q 91-20-3 Naphthalene ND 0.11 0.032 ug/l 123-91-1 1,4-Dioxane 0.7230.11 0.053 ug/l CAS No. Surrogate Recoveries Run# I Run#2 Limits 4165-60-0 Nitrobenzene-d5 74% 24-125% 321-60-8 2-Fluorobiphenyl 69% 19-127% 1718-51-0 Terphenyl-d14 94% 10-119%



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

20 of 1562

## Report of Analysis

Ву

XPL

Prep Date

n/a

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-18 JC22206-2

Date Sampled: Date Received:

n/a

06/10/16

Matrix: Method: AQ - Ground Water SW846-8015C (DAI)

DF

1

06/15/16 Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch** 

GGH5324

Run-#1 Run #2

Low Molecular Alcohol List

File ID

GH105529.D

| CAS No.  | Compound             | Result | RL     | MDL  | Units | Q |
|----------|----------------------|--------|--------|------|-------|---|
| 64-17-5  | Ethanol              | ND     | 100    | 55   | ug/l  |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 100    | 36   | ug/l  |   |
| 67-63-0  | Isopropyl Alcohol    | ND     | 100    | 68   | ug/l  |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 100    | 43   | ug/l  |   |
| 71-36-3  | n-Butyl Alcohol      | ND     | 100    | 87   | ug/l  |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 100    | 66   | ug/l  |   |
| 67-56-1  | Methanol             | ND     | 200    | 71   | ug/l  |   |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Lim  | its   |   |
| 111-27-3 | Hexanol              | 101%   |        | 56-1 | 45%   |   |
| 111-27-3 | Hexanol              | 109%   |        | 56-1 | 45%   |   |

Analyzed

06/16/16



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

By

BP

Prep Date

06/16/16

Page 1 of 3

Client Sample ID: MW-7 Lab Sample ID; JC22206-3

File ID

F158293.D

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 06/10/16 Date Received: 06/15/16

Q

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch** OP94835 EF6663

Run #1 Run #2

Initial Volume

Final Volume

Analyzed

06/24/16

940 ml 1.0 ml

Run #1 Run #2

### ABN TCL Special List

| CAS No.   | Compound                   | Result | RL    | MDL  | Unit |
|-----------|----------------------------|--------|-------|------|------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.3   | 0.87 | ug/l |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.3   | 0.95 | ug/l |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.1   | 1:4  | ug/l |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.3   | 2.6  | ug/l |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 11    | 1.6  | ug/l |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.3   | 1.4  | ug/l |
| 95-48-7   | 2-Methylphenol             | ND     | 2.1   | 0.94 | ug/l |
|           | 3&4-Methylphenol           | ND     | 2.1   | 0.94 | ug/l |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.3   | 1.0  | ug/l |
| 100-02-7  | 4-Nitrophenol              | ND     | 11    | 1.2  | ug/l |
| 87-86-5   | Pentachlorophenol          | ND     | 5.3   | 1.5  | ug/l |
| 108-95-2  | Phenol                     | ND     | 2.1   | 0.42 | ug/l |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.3   | 1.6  | ug/I |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 5.3   | 1.4  | ug/l |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.3   | 0.98 | ug/l |
| 83-32-9   | Acenaphthene               | ND     | 1.1   | 0.20 | ug/l |
| 208-96-8  | Acenaphthylene             | ND     | 1.1   | 0.14 | ug/l |
| 98-86-2   | Acetophenone               | ND     | 2.1   | 0.22 | ug/l |
| 120-12-7  | Anthracene                 | ND     | 1.1   | 0.22 | ug/l |
| 1912-24-9 | Atrazine                   | ND     | 2.1   | 0.48 | ug/l |
| 100-52-7  | Benzaldehyde               | ND     | 5.3   | 0.31 | ug/l |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.1   | 0.22 | ug/l |
| 50-32-8   | Benzo(a) pyrene            | ND     | 1.1   | 0.23 | ug/l |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.1   | 0.22 | ug/l |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.1   | 0.36 | ug/l |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.1   | 0.22 | ug/I |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | . 2.1 | 0.43 | ug/l |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.1   | 0.49 | ug/l |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.1   | 0.23 | ug/l |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.1   | 0.25 | ug/l |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.3   | 0.36 | ug/l |
| 86-74-8   | Carbazole                  | ND     | 1.1   | 0.24 | ug/l |
|           |                            |        |       |      | _    |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7 Lab Sample ID: JC22206-3

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: Date Received: Percent Solids: n/a

06/10/16 06/15/16

Method: Project: BMSMC, Building 5 Area, PR

## ABN TCL Special List

| CAS No.    | Compound                    | Result | RL     | MDL   | Units       | Q |
|------------|-----------------------------|--------|--------|-------|-------------|---|
| 105-60-2   | Caprolactam                 | ND     | 2.1    | 0.69  | ug/l        |   |
| 218-01-9   | Chrysene                    | ND     | 1.1    | 0.19  | ug/l        |   |
| 111-91-1   | bis(2-Chloroethoxy)methane  | ND     | 2.1    | 0.30  | ug/l        |   |
| 111-44-4   | bis(2-Chloroethyl)ether     | ND     | 2.1    | 0.26  | ug/l        |   |
| 108-60-1   | bis(2-Chloroisopropyl)ether | ND     | 2.1    | 0.43  | ug/l        |   |
| 7005-72-3  | 4-Chlorophenyl phenyl ether | ND     | 2.1    | 0.39  | ug/l        |   |
| 121-14-2   | 2,4-Dinitrotoluene          | ND     | 1.1    | 0.59  | ug/l        |   |
| 606-20-2   | 2,6-Dinitrotoluene          | ND     | 1.1    | 0.51  | ug/l        |   |
| 91-94-1    | 3,3'-Dichlorobenzidine      | ND     | 2.1    | 0.54  | ug/l        |   |
| 53-70-3    | Dibenzo(a,h)anthracene      | ND     | 1.1    | 0.35  | ug/l        |   |
| 132-64-9   | Dibenzofuran                | ND     | 5.3    | 0.23  | ug/l        |   |
| 84-74-2    | Di-n-butyl phthalate        | ND     | 2.1    | 0.53  | ug/l        |   |
| 117-84-0   | Di-n-octyl phthalate        | ND     | 2.1    | 0.25  | ug/l        |   |
| 84-66-2    | Diethyl phthalate           | ND     | 2.1    | 0.28  | ug/l        |   |
| 131-11-3   | Dimethyl phthalate          | ND     | 2.1    | 0.23  | ug/l        |   |
| 117-81-7   | bis(2-Ethylhexyl)phthalate  | ND     | 2.1    | 1.8   | ug/l        |   |
| 206-44-0   | Fluoranthene                | ND     | 1.1    | 0.18  | ug/i        |   |
| 86-73-7    | Fluorene                    | ND     | 1.1    | 0.18  | ug/l        |   |
| 118-74-1   | Hexachlorobenzene           | ND     | 1.1    | 0.35  | ug/l        |   |
| 87-68-3    | Hexachlorobutadiene         | ND     | 1.1    | 0.52  | ug/l        |   |
| 77-47-4    | Hexachlorocyclopentadiene   | ND     | 11     | 3.0   | ug/l        |   |
| 67-72-1    | Hexachloroethane            | ND     | 2.1    | 0.41  | ug/l        |   |
| 193-39-5   | Indeno(1,2,3-cd)pyrene      | ND     | 1.1    | 0.35  | ug/l        |   |
| 78-59-1    | Isophorone                  | ND     | 2.1    | 0.29  | ug/l        |   |
| 90-12-0    | 1-Methylnaphthalene         | ND     | 1.1    | 0.28  | ug/l        |   |
| 91-57-6    | 2-Methylnaphthalene         | ND     | 1.1    | 0.22  | ug/I        |   |
| 88-74-4    | 2-Nitroaniline              | ND     | 5.3    | 0.29  | ug/l        |   |
| 99-09-2    | 3-Nitroaniline              | ND     | 5.3    | 0.41  | ug/l        |   |
| 100-01-6   | 4-Nitroaniline              | ND     | 5.3    | 0.47  | ug/l        |   |
| 98-95-3    | Nitrobenzene                | ND     | 2.1    | 0.68  | ug/l        |   |
| 621-64-7   | N-Nitroso-di-n-propylamine  | ND     | 2.1    | 0.51  | ug/l        |   |
| 86-30-6    | N-Nitrosodiphenylamine      | ND.    | 5.3    | 0.24  | ug/l        |   |
| 85-01-8    | Phenanthrene                | ND     | 1.1    | 0.19  | ug/l        |   |
| 129-00-0   | Pyrene                      | ND     | 1.1    | 0.23  | ug/l        |   |
| 95-94-3    | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.1    | 0.39  | ug/l        |   |
| CAS No.    | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim   |             |   |
| 367-12-4   | 2-Fluorophenol              | 53%    |        | 14-8  | Q0 <u>/</u> |   |
| 4165-62-2  | Phenol-d5                   | 34%    |        | 77.00 | 10%         |   |
| -1102-07-2 | 1 Hellorus                  | 3470   |        | 10-1  | 10 /0       |   |



ND = Not detected RL = Reporting Limit MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: Lab Sample ID:

MW-7 JC22206-3

AQ - Ground Water

Matrix: Method:

Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 06/10/16 Date Received: 06/15/16

Percent Solids: n/a

### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 112%   |        | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 80%    |        | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 85%    |        | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 92%    |        | 10-126% |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

1718-51-0

Terphenyl-d14

## Report of Analysis

Page 1 of 1

| Client Sam<br>Lab Sampl<br>Matrix:<br>Method:<br>Project: | le ID: JC2220<br>AQ - C<br>SW846 | round Wate<br>8270D BY | er<br>SIM SW846<br>3 5 Area, PR | 3510C        |                   | Date         | •                      | 5/10/16<br>5/15/16<br>a     |
|-----------------------------------------------------------|----------------------------------|------------------------|---------------------------------|--------------|-------------------|--------------|------------------------|-----------------------------|
| Run #1<br>Run #2                                          | File ID<br>4M66458.D             | DF<br>1                | Analyzed<br>06/29/16            | By<br>LK     | Prep D<br>06/16/1 |              | Prep Batch<br>OP94835A | Analytical Batch<br>E4M2988 |
| Run #1<br>Run #2                                          | Initial Volume<br>940 ml         | Final Vo               | lume                            |              | •                 |              |                        |                             |
| CAS No.                                                   | Compound                         |                        | Result                          | RL           | MDL               | Units        | Q                      | **                          |
| 91-20-3<br>123-91-1                                       | Naphthalene<br>1,4-Dioxane       |                        | ND<br>1.36                      | 0.11<br>0.11 | 0.031<br>0.052    | ug/l<br>ug/l |                        |                             |
| CAS No.                                                   | Surrogate Rec                    | coveries               | Run#1                           | Run# 2       | Lim               | its          |                        |                             |
| 4165-60-0<br>321-60-8                                     | Nitrobenzene-(<br>2-Fluorobipher |                        | 76%<br>71%                      |              |                   | .25%<br>.27% |                        |                             |

98%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

10-119%

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

## Report of Analysis

By

· XPL

n/a

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID: JC22206-3

File ID

GH105530.D

Matrix: Method: Project:

AQ - Ground Water SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Date Sampled: 06/10/16 Date Received: 06/15/16

Percent Solids: n/a

n/a

Prep Date Prep Batch Analytical Batch

GGH5324

Run #1 Run #2

### Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL  | Units | Q |
|----------|----------------------|--------|--------|------|-------|---|
| 64-17-5  | Ethanol              | ND     | 100    | 55   | ug/l  |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 100    | 36   | ug/l  |   |
| 67-63-0  | Isopropyl Alcohol    | ND     | 100    | 68   | ug/l  |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 100    | 43   | ug/i  |   |
| 71-36-3  | n-Butyl Alcohol      | ND     | 100    | 87   | ug/l  |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 100    | 66   | ug/l  |   |
| 67-56-1  | Methanol             | ND     | 200    | 71   | ug/l  |   |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Lim  | its   |   |
| 111-27-3 | Hexanol              | 102%   |        | 56-1 | 45%   |   |
| 111-27-3 | Hexanol              | 109%   |        | 56-1 | 45%   |   |

Analyzed

06/16/16





MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

## Report of Analysis

By

BP

06/17/16

Page 1 of 3

Client Sample ID: S-36

Lab Sample ID: JC22206-4

File ID

1000 ml

F158384.D

Matrix: Method: AQ - Ground Water

DF

1

SW846 8270D SW846 3510C

Date Sampled: 06/13/16 Date Received:

06/15/16

Percent Solids: n/a

OP94859

Q

Project:

BMSMC, Building 5 Area, PR

Analyzed

06/27/16

Prep Date Prep Batch **Analytical Batch** 

EF6666

Run #1 Run #2

Initial Volume

Final Volume

Run #1 Run #2 1.0 ml

### ABN TCL Special List

| CAS No.   | Compound                   | Result | RL  | MDL  | Units |
|-----------|----------------------------|--------|-----|------|-------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.0 | 0.82 | ug/l  |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.0 | 0.89 | ug/l  |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.0 | 1.3  | ug/l  |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.0 | 2.4  | ug/l  |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 10  | 1.6  | ug/l  |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.0 | 1.3  | ug/l  |
| 95-48-7   | 2-Methylphenol             | ND     | 2.0 | 0.89 | ug/l  |
|           | 3&4-Methylphenol           | ND     | 2.0 | 0.88 | ug/l  |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.0 | 0.96 | ug/l  |
| 100-02-7  | 4-Nitrophenol              | ND     | 10  | 1.2  | ug/i  |
| 87-86-5   | Pentachiorophenol          | ND     | 5.0 | 1.4  | ug/l  |
| 108-95-2  | Phenol                     | ND     | 2.0 | 0.39 | ug/l  |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.0 | 1.5  | ug/l  |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 5.0 | 1.3  | ug/l  |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.0 | 0.92 | ug/l  |
| 83-32-9   | Acenaphthene               | ND     | 1.0 | 0.19 | ug/l  |
| 208-96-8  | Acenaphthylene             | ND     | 1.0 | 0.14 | ug/l  |
| 98-86-2   | Acetophenone               | ND     | 2.0 | 0.21 | ug/l  |
| 120-12-7  | Anthracene                 | ND     | 1.0 | 0.21 | ug/l  |
| 1912-24-9 | Atrazine                   | ND     | 2.0 | 0.45 | ug/l  |
| 100-52-7  | Benzaldehyde               | ND     | 5.0 | 0.29 | ug/l  |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.0 | 0.20 | ug/l  |
| 50-32-8   | Benzo(a) pyrene            | ND     | 1.0 | 0.21 | ug/l  |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.0 | 0.21 | ug/I  |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.0 | 0.34 | ug/i  |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.0 | 0.40 | ug/l  |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.0 | 0.46 | ug/l  |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.0 | 0.21 | ug/l  |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.0 | 0.24 | ug/l  |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.0 | 0.34 | ug/l  |
| 86-74-8   | Carbazole                  | ND     | 1.0 | 0.23 | ug/l  |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-36 Lab Sample ID:

JC22206-4

Matrix: Method: Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 06/13/16 Date Received: 06/15/16

Percent Solids: n/a

### ABN TCL Special List

| ABN ICL   | Special List                |        |          |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-----------------------------|--------|----------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAS No.   | Compound                    | Result | RL       | MDL  | Units | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 105-60-2  | Caprolactam                 | ND     | 2.0      | 0.65 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 218-01-9  | Chrysene                    | ND     | 1.0      | 0.18 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.0      | 0.28 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 2.0      | 0.25 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.0      | 0.40 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.0      | 0.37 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.0      | 0.55 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 1.0      | 0.48 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.0      | 0.51 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53-70-3   | Dibenzo(a,h)anthracene      | ND     | 1.0      | 0.33 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 132-64-9  | Dibenzofuran                | ND     | 5.0      | 0.22 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.0      | 0.50 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.0      | 0.23 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 84-66-2   | Diethyl phthalate           | ND     | 2.0      | 0.26 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.0      | 0.22 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | 2.1    | 2.0      | 1.7  | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 206-44-0  | Fluoranthene                | ND     | 1.0      | 0.17 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 86-73-7   | Fluorene                    | ND     | 1.0      | 0.17 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 118-74-1  | Hexachlorobenzene           | ND     | 1.0      | 0.33 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 87-68-3   | Hexachlorobutadiene         | ND     | 1.0      | 0.49 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 10       | 2.8  | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 67-72-1   | Hexachloroethane            | ND     | 2.0      | 0.39 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.0      | 0.33 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 78-59-1   | Isophorone                  | ND     | 2.0      | 0.28 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 1.0      | 0.26 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.0      | 0.21 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.0      | 0.28 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.0      | 0.39 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.0      | 0.44 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 98-95-3   | Nitrobenzene                | ND.    | 2.0      | 0.64 | ug/l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.0      | 0.48 | ug/i  | SOCIADO DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.0      | 0.22 | ug/l  | OF THE PROPERTY OF THE PROPERT |
| 85-01-8   | Phenanthrene                | ND     | 1.0      | 0.18 | ug/l  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 129-00-0  | Pyrene                      | ND     | 1.0      | 0.22 | ug/l  | fael Infante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.0      | 0.37 | ug/l  | Méndez 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CACN      | Spendente December          | D      | Dari H = |      |       | IC ≠ 1888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2   | Lim  | lts   | CO LICENCHAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 367-12-4  | 2-Fluorophenol              | 55%    |          | 14-8 | 8%    | S.O FICE MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4165-62-2 | Phenol-d5                   | 36%    |          | 10-1 | 10%   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |                             |        |          |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: Lab Sample ID:

): S-36

JC22206-4

Matrix:

Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 06/13/16 Date Received: 06/15/16

Percent Solids: n/a

### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run#1 | Run# 2 | Limits  |
|-----------|----------------------|-------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 105%  |        | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 82%   |        | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 80%   |        | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 89%   |        | 10-126% |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

Page 1 of 1

| Client San<br>Lab Samp<br>Matrix:          | le ID: JC2220          | 6-4<br>round Wate | ar                   |          |                    |       |                      | 5/13/16<br>5/15/16 |
|--------------------------------------------|------------------------|-------------------|----------------------|----------|--------------------|-------|----------------------|--------------------|
| Method:<br>Project:                        | SW846                  | 8270D BY          |                      | 3510C    |                    |       | ent Solids: n/       |                    |
|                                            | File ID                | DF                | Analyzed             | Ву       | Prep D             |       | Prep Batch           | Analytical Batch   |
| Run #1 <sup>а</sup><br>Run #2 <sup>b</sup> | 4M66467.D<br>4M66525.D | 1                 | 06/29/16<br>07/01/16 | ŁK<br>JJ | 06/17/1<br>06/30/1 | •     | OP94859A<br>OP95225A | E4M2989<br>E4M2991 |
|                                            | Initial Volume         | Final Vo          | lume                 |          |                    |       |                      |                    |
| Run #1                                     | 1000 ml                | 1.0 ml            |                      |          |                    |       |                      |                    |
| Run #2                                     | 950 ml                 | 1.0 ml            |                      |          |                    |       |                      |                    |
| CAS No.                                    | Compound               |                   | Result               | RL       | MDL                | Units | Q                    | ·                  |
| 91-20-3                                    | Naphthalene            |                   | ND                   | 0.10     | 0.029              | ug/l  |                      |                    |
| 123-91-1                                   | 1,4-Dioxane            |                   | 2.86                 | 0.10     | 0.049              | ug/l  | В                    |                    |
| CAS No.                                    | Surrogate Rec          | overies           | Run# 1               | Run# 2   | Lim                | its   |                      |                    |
| 4165-60-0                                  | Nitrobenzene-d         | 15                | 95%                  | 83%      | 24-1               | 25%   |                      |                    |
| 321-60-8                                   | 2-Fluorobiphen         | ıyl               | 102%                 | 68%      | 19-1               | 27%   |                      |                    |
| 1718-51-0                                  | Terphenyl-d14          |                   | 94%                  | 72%      | 10-1               | 19%   |                      |                    |
|                                            |                        |                   |                      |          |                    |       |                      |                    |

(a) There is compound contamination in MB. The results confirmed by re-extraction outside holding time.

(b) Confirmation run.



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis Page 1 of 1

Client Sample ID: S-36

Lab Sample ID: JC22206-4

Matrix: Method:

**SGS** Accutest

AQ - Ground Water SW846-8015C (DAI)

Project: BMSMC, Building 5 Area, PR Date Sampled:

06/13/16

06/15/16 Date Received:

Percent Solids:

|        | File ID    | DF | Analyzed | Ву  | Prep Date | Prep Batch | Analytical Batch |
|--------|------------|----|----------|-----|-----------|------------|------------------|
| Run #1 | GH105531.D | 1  | 06/16/16 | XPL | n/a       | n/a        | GGH5324          |
| Run #2 |            |    |          |     |           |            |                  |

Low Molecular Alcohol List

| CAS No.                                  | Compound                                                             | Result               | RL                       | MDL                  | Units                        | Q |
|------------------------------------------|----------------------------------------------------------------------|----------------------|--------------------------|----------------------|------------------------------|---|
| 64-17-5<br>78-83-1<br>67-63-0<br>71-23-8 | Ethanol<br>Isobutyl Alcohol<br>Isopropyl Alcohol<br>n-Propyl Alcohol | ND<br>ND<br>ND<br>ND | 100<br>100<br>100<br>100 | 55<br>36<br>68<br>43 | ug/l<br>ug/l<br>ug/l<br>ug/l |   |
| 71-36-3<br>78-92-2<br>67-56-1            | n-Butyl Alcohol<br>sec-Butyl Alcohol<br>Methanol                     | ND<br>ND<br>ND       | 100<br>100<br>200        | 87<br>66<br>71       | ug/i<br>ug/i<br>ug/i         |   |
| CAS No.                                  | Surrogate Recoveries                                                 | Run# 1               | Run# 2                   | Lim                  | its                          |   |
| 111-27-3<br>111-27-3                     | Hexanol<br>Hexanol                                                   | 105%<br>111%         |                          |                      | 45%<br>45%                   |   |





MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

## Report of Analysis

Page 1 of 1

Client Sample ID: S-36

Lab Sample ID: JC22206-4

Matrix: Method: AQ - Ground Water

SW846 8081B SW846 3510C

Date Sampled: 06/13/16 Date Received: 06/15/16

Q

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 6G36621.D 06/27/16 G6G1047 1 DS 96/17/16 OP94861

Run #2

Initial Volume Final Volume 930 ml

Run #1

Run #2

10.0 ml

### Pesticide TCL List

| CAS No.    | Compound             | Result | RL     | MDL    | Units        |
|------------|----------------------|--------|--------|--------|--------------|
| 309-00-2   | Aldrin               | ND     | 0.011  | 0.0065 | ug/l         |
| 319-84-6   | alpha-BHC            | ND     | 0.011  | 0.0065 | ug/l         |
| 319-85-7   | beta-BHC             | ND     | 0.011  | 0.0061 | ug/l         |
| 319-86-8   | delta-BHC            | ND     | 0.011  | 0.0049 | ug/l         |
| 58-89-9    | gamma-BHC (Lindane)  | ND 🛧   | 0.011  | 0.0030 | ug/l         |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.011  | 0.0050 | ug/l         |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.011  | 0.0049 | ug/l         |
| 60-57-1    | Dieldrin             | ND     | 0.011  | 0.0039 | ug/l         |
| 72-54-8    | 4,4'-DDD             | ND     | 0.011  | 0.0041 | ug/l         |
| 72-55-9    | 4,4'-DDE             | ND     | 0.011  | 0.0066 | ug/l         |
| 50-29-3    | 4,4'-DDT             | ND     | 0.011  | 0.0053 | ug/I         |
| 72-20-8    | Endrin               | ND     | 0.011  | 0.0054 | ug/l         |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.011  | 0.0056 | ug/l         |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.011  | 0.0055 | ug/l         |
| 53494-70-5 | Endrin ketone        | ND     | 0.011  | 0.0055 | ug/l         |
| 959-98-8   | Endosulfan-I         | ND     | 0.011  | 0.0053 | ug/l         |
| 33213-65-9 | Endosulfan-II        | ND     | 0.011  | 0.0046 | ug/l         |
| 76-44-8    | Heptachlor           | ND     | 0.011  | 0.0041 | ug/l         |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.011  | 0.0070 | ug/l         |
| 72-43-5    | Methoxychlor         | ND     | 0.022  | 0.0061 | ug/l         |
| 8001-35-2  | Toxaphene            | ND     | 0.27   | 0.20   | ug/l         |
| CAS No.    | Surrogate Recoveries | Run#1  | Run# 2 | Limi   | ts           |
| 877-09-8   | Tetrachloro-m-xylene | 102%   |        | 26-13  | 32%          |
| 877-09-8   | Tetrachloro-m-xylene | 96%    |        | 26-13  | 32%          |
| 2051-24-3  | Decachlorobiphenyl   | 85%    |        | 10-11  | 18%          |
| 2051-24-3  | Decachlorobiphenyl   | 87%    |        | 10-11  | l <b>8</b> % |
|            |                      |        |        |        |              |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

Page 1 of 3

Client Sample ID: S-36D

Lab Sample ID: JC22206-5

File ID

F158385.D

Matrix: Method: AQ - Ground Water SW846 8270D SW846 3510C Date Sampled: 06/13/16 Date Received: 06/15/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

Run #1

Run #2

DF 1

Analyzed Ву 06/27/16 ·BP Prep Date 06/17/16

Prep Batch OP94859

Q

**Analytical Batch** EF6666

**Initial Volume** Final Volume Run #1 1000 ml

Run #2

1.0 ml

### ABN TCL Special List

| CAS No.   | Compound                   | Result | RL  | MDL  | Units |
|-----------|----------------------------|--------|-----|------|-------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.0 | 0.82 | ug/l  |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.0 | 0.89 | ug/l  |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.0 | 1.3  | ug/l  |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.0 | 2.4  | ug/l  |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 10  | 1.6  | ug/l  |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.0 | 1.3  | ug/l  |
| 95-48-7   | 2-Methylphenol             | ND     | 2.0 | 0.89 | ug/l  |
|           | 3&4-Methylphenol           | ND     | 2.0 | 0.88 | ug/l  |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.0 | 0.96 | ug/l  |
| 100-02-7  | 4-Nitrophenol              | ND     | 10  | 1.2  | ug/l  |
| 87-86-5   | Pentachlorophenol          | ND     | 5.0 | 1.4  | ug/l  |
| 108-95-2  | Phenol                     | ND     | 2.0 | 0.39 | ug/I  |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.0 | 1.5  | ug/l  |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 5.0 | 1.3  | ug/l  |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.0 | 0.92 | ug/l  |
| 83-32-9   | Acenaphthene               | ND     | 1.0 | 0.19 | ug/l  |
| 208-96-8  | Acenaphthylene             | ND     | 1.0 | 0.14 | ug/f  |
| 98-86-2   | Acetophenone               | ND     | 2.0 | 0.21 | ug/l  |
| 120-12-7  | Anthracene                 | ND     | 1.0 | 0.21 | ug/l  |
| 1912-24-9 | Atrazine                   | ND     | 2.0 | 0.45 | ug/l  |
| 100-52-7  | Benzaldehyde               | ND     | 5.0 | 0.29 | ug/l  |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.0 | 0.20 | ug/l  |
| 50-32-8   | Benzo(a)pyrene             | ND     | 1.0 | 0.21 | ug/l  |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.0 | 0.34 | ug/l  |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.0 | 0.40 | ug/l  |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.0 | 0.46 | ug/l  |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.0 | 0.21 | ug/l  |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.0 | 0.24 | ug/l  |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.0 | 0.34 | ug/l  |
| 86-74-8   | Carbazole                  | ND     | 1.0 | 0.23 | ug/l  |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-36D Lab Sample ID: JC22206-5

Matrix: AQ - Gro

AQ - Ground Water SW846 8270D SW846 3510C Date Sampled: 06/13/16
Date Received: 06/15/16
Percent Solids: n/a

Method: Project:

BMSMC, Building 5 Area, PR

### ABN TCL Special List

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q         |      |
|-----------|-----------------------------|--------|--------|------|-------|-----------|------|
| 105-60-2  | Caprolactam                 | ND     | 2.0    | 0.65 | ug/l  |           |      |
| 218-01-9  | Chrysene                    | ND     | 1.0    | 0.18 | ug/l  |           |      |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.0    | 0.28 | ug/I  |           |      |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 2.0    | 0.25 | ug/l  |           |      |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.0    | 0.40 | ug/l  |           |      |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.0    | 0.37 | ug/l  |           |      |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.0    | 0.55 | ug/l  |           |      |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 1.0    | 0.48 | ug/l  |           |      |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.0    | 0.51 | ug/l  |           |      |
| 53-70-3   | Dibenzo(a,h)anthracene      | ND     | 1.0    | 0.33 | ug/l  |           |      |
| 132-64-9  | Dibenzofuran                | ND     | 5.0    | 0.22 | ug/l  |           |      |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.0    | 0.50 | ug/l  |           |      |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.0    | 0.23 | ug/l  |           |      |
| 84-66-2   | Diethyl phthalate           | ND     | 2.0    | 0.26 | ug/l  |           |      |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.0    | 0.22 | ug/l  |           |      |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | 18.9   | 2.0    | 1.7  | ug/l  |           |      |
| 206-44-0  | Fluoranthene                | ND     | 1.0    | 0.17 | ug/l  |           |      |
| 86-73-7   | Fluorene                    | ND     | 1.0    | 0.17 | ug/l  |           |      |
| 118-74-1  | Hexachlorobenzene           | ND     | 1.0    | 0.33 | ug/i  |           |      |
| 87-68-3   | Hexachlorobutadiene         | ND     | 1.0    | 0.49 | ug/l  |           |      |
| 77-47-4   | Hexachlorocyclopentadiene   | ND-    | 10     | 2.8  | ug/l  |           |      |
| 67-72-1   | Hexachloroethane            | ND     | 2.0    | 0.39 | ug/l  |           |      |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.0    | 0.33 | ug/l  |           |      |
| 78-59-1   | Isophorone                  | ND     | 2.0    | 0.28 | ug/l  |           |      |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 1.0    | 0.26 | ug/l  |           |      |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.0    | 0.21 | ug/l  |           |      |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.0    | 0.28 | ug/l  |           |      |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.0    | 0.39 | ug/l  |           |      |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.0    | 0.44 | ug/l  | - 0       | P14  |
| 98-95-3   | Nitrobenzene                | ND     | 2.0    | 0.64 | ug/l  | 26 180    |      |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.0    | 0.48 | ug/i  | 1 8       | 10   |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.0    | 0.22 | ug/l  | (S) " dae | al I |
| 85-01-8   | Phenanthrene                | ND     | 1.0    | 0.18 | ug/l  |           | én   |
| 129-00-0  | Pyrene                      | ND     | 1.0    | 0.22 | ug/l  | \2 1C     | 22   |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.0    | 0.37 | ug/l  | 0 / 0     |      |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | its   | Sulmico.  | LI   |
| 367-12-4  | 2-Fluorophenol              | 51%    |        | 14-8 | 8%    |           |      |
| 4165-62-2 | Phenol-d5                   | 34%    |        | 10-1 | 10%   |           |      |



MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: S-36D Lab Sample ID:

JC22206-5

AQ - Ground Water

Date Sampled: 06/13/16 Date Received: 06/15/16

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 99%    |        | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 81%    |        | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 77%    |        | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 80%    |        | 10-126% |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

Page 1 of 1

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | le ID: JC222<br>AQ - SW84           | 96-5<br>Ground Wate<br>6 8270D BY |           | 3510C  | 250     | Date  |            | 5/13/16<br>6/15/16<br>a |
|----------------------------------------------------------|-------------------------------------|-----------------------------------|-----------|--------|---------|-------|------------|-------------------------|
| D #* 2                                                   | File ID                             | DF                                | Analyzed  | Ву     | Ргер D  |       | Prep Batch | Analytical Batch        |
| Run #1 a                                                 | 4M66468.D                           | 1                                 | 06/29/16  | LK     | 06/17/1 | -     | OP94859A   | E4M2989                 |
| Run #2 b                                                 | 4M66526.D                           | 1                                 | 07/01/16  | JJ     | 06/30/1 | 6     | OP95225A   | E4M2991                 |
| Run #1<br>Run #2                                         | Initial Volume<br>1000 ml<br>950 ml | Final Vo<br>1.0 ml<br>1.0 ml      | lume<br>4 |        |         |       |            |                         |
| CAS No.                                                  | Compound                            |                                   | Result    | RL     | MDL     | Units | Q          |                         |
| 91-20-3                                                  | Naphthalene                         |                                   | ND        | 0.10   | 0.029   | ug/l  |            |                         |
| 123-91-1                                                 | 1,4-Dioxane                         |                                   | 3.46      | 0.10   | 0.049   | ug/l  | В          |                         |
| CAS No.                                                  | Surrogate Re                        | coveries                          | Run# 1    | Run# 2 | Lim     | its   |            |                         |

74%

60%

77%

24-125%

19-127%

10-119%

(a) There is compound contamination in MB. The results confirmed by re-extraction outside holding time.

90%

95%

86%

(b) Confirmation run.

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

4165-60-0

321-60-8

1718-51-0



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = Indicates an estimated value <math>\rightarrow$ 

B = Indicates analyte found in associated method blank

## Report of Analysis

Ву

XPL

Prep Date

n/a

Page 1 of 1

Client Sample ID: Lab Sample ID:

S-36D JC22206-5

Date Sampled: 06/13/16 Date Received: 06/15/16

Matrix: Method: AQ - Ground Water SW846-8015C (DAI)

DF

1

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Run #1

Analyzed

06/16/16

Prep Batch **Analytical Batch** GGH5324 n/a

Run #2

Low Molecular Alcohol List

File ID

GH105532.D

| CAS No.                                                                   | Compound                                                                                               | Result                                 | RL                                            | MDL                                    | Units                                        | Q |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------------|---|
| 64-17-5<br>78-83-1<br>67-63-0<br>71-23-8<br>71-36-3<br>78-92-2<br>67-56-1 | Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 100<br>100<br>100<br>100<br>100<br>100<br>200 | 55<br>36<br>68<br>43<br>87<br>66<br>71 | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l |   |
| CAS No. 111-27-3 111-27-3                                                 | Surrogate Recoveries  Hexanol  Hexanol                                                                 | Run# 1<br>108%<br>117%                 | Run# 2                                        | <b>Lim</b> i<br>56-1-<br>56-1-         | its<br>45%                                   |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

## Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

S-36D JC22206-5

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 06/13/16 Date Received:

Q

06/15/16 Percent Solids:

Run #1 Run #2 DF 1

Analyzed 06/27/16

By Prep Date DS 06/17/16

Prep Batch OP94861

**Analytical Batch** 

G6G1047

Initial Volume 980 ml

6G36622.D

File ID

Final Volume 10.0 ml

Run #1 Run #2

### Pesticide TCL List

| CAS No.    | Compound             | Result | RL     | MDL    | Units |
|------------|----------------------|--------|--------|--------|-------|
| 309-00-2   | Aldrin               | ND     | 0.010  | 0.0062 | ug/l  |
| 319-84-6   | alpha-BHC            | ND     | 0.010  | 0.0061 | ug/I  |
| 319-85-7   | beta-BHC             | ND     | 0.010  | 0.0058 | ug/l  |
| 319-86-8   | delta-BHC            | ND     | 0.010  | 0.0047 | ug/l  |
| 58-89-9    | gamma-BHC (Lindane)  | ND     | 0.010  | 0.0028 | ug/l  |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.010  | 0.0047 | ug/l  |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.010  | 0.0047 | ug/l  |
| 60-57-1    | Dieldrin             | ND     | 0.010  | 0.0037 | ug/l  |
| 72-54-8    | 4,4'-DDD             | ND     | 0.010  | 0.0039 | ug/l  |
| 72-55-9    | 4,4'-DDE             | ND     | 0.010  | 0.0063 | ug/l  |
| 50-29-3    | 4,4'-DDT             | ND     | 0.010  | 0.0051 | ug/l  |
| 72-20-8    | Endrin               | ND     | 0.010  | 0.0051 | ug/l  |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.010  | 0.0054 | ug/l  |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.010  | 0.0052 | ug/l  |
| 53494-70-5 | Endrin ketone        | ND     | 0.010  | 0.0052 | ug/l  |
| 959-98-8   | Endosulfan-I         | ND     | 0.010  | 0.0051 | ug/l  |
| 33213-65-9 | Endosulfan-II        | ND     | 0.010  | 0.0044 | ug/l  |
| 76-44-8    | Heptachlor           | ND     | 0.010  | 0.0039 | ug/l  |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.010  | 0.0067 | ug/l  |
| 72-43-5    | Methoxychlor         | ND     | 0.020  | 0.0058 | ug/l  |
| 8001-35-2  | Toxaphene            | ND     | 0.26   | 0.19   | ug/l  |
| CAS No.    | Surrogate Recoveries | Run# 1 | Run# 2 | Limi   | ts    |
| 877-09-8   | Tetrachloro-m-xylene | 93%    |        | 26-13  | 32%   |
| 877-09-8   | Tetrachloro-m-xylene | 85%    |        | 26-13  | 32% / |
| 2051-24-3  | Decachlorobiphenyl   | 76%    |        | 10-1   | 18%   |
| 2051-24-3  | Decachlorobiphenyl   | 76%    |        | 10-1   | 18%   |
|            |                      |        |        |        | \     |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

By

BP

Page 1 of 3

| Client | Sample 1 | D: S-37 |
|--------|----------|---------|
|--------|----------|---------|

Lab Sample ID: JC22206-6

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

DF

1

Date Received:

Prep Date

06/17/16

Date Sampled: 06/13/16 06/15/16

Method:

Analyzed

- 06/27/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch OP94859

Q

Analytical Batch EF6666

Run #1 Run #2

Initial Volume

F158386.D

Final Volume

Run #1 Run #2 1000 ml

File ID

1.0 ml

### ABN TCL Special List

| CAS No.   | Compound                   | Result | RL  | MDL  | Units |
|-----------|----------------------------|--------|-----|------|-------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.0 | 0.82 | ug/l  |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.0 | 0.89 | ug/l  |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.0 | 1.3  | ug/l  |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.0 | 2.4  | ug/l  |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 10  | 1.6  | ug/l  |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.0 | 1.3  | ug/l  |
| 95-48-7   | 2-Methylphenol             | ND     | 2.0 | 0.89 | ug/l  |
|           | 3&4-Methylphenol           | ND     | 2.0 | 0.88 | ug/l  |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.0 | 0.96 | ug/l  |
| 100-02-7  | 4-Nitrophenol              | ND     | 10  | 1.2  | ug/l  |
| 87-86-5   | Pentachlorophenol          | ND     | 5.0 | 1.4  | ug/l  |
| 108-95-2  | · Phenol                   | ND     | 2.0 | 0.39 | ug/i  |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.0 | 1.5  | ug/l  |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 5.0 | 1.3  | ug/l  |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.0 | 0.92 | ug/l  |
| 83-32-9   | Acenaphthene               | ND     | 1.0 | 0.19 | ug/l  |
| 208-96-8  | Acenaphthylene             | ND     | 1.0 | 0.14 | ug/l  |
| 98-86-2   | Acetophenone               | ND     | 2.0 | 0.21 | ug/l  |
| 120-12-7  | Anthracene                 | ND     | 1.0 | 0.21 | ug/l  |
| 1912-24-9 | Atrazine                   | ND     | 2.0 | 0.45 | ug/l  |
| 100-52-7  | Benzaldehyde               | ND     | 5.0 | 0.29 | ug/l  |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.0 | 0.20 | ug/l  |
| 50-32-8   | Benzo(a)pyrene             | ND     | 1.0 | 0.21 | ug/l  |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 191-24-2  | Benzo(g,h,i)perylene       | ND.    | 1.0 | 0.34 | ug/l  |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.0 | 0.40 | ug/l  |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.0 | 0.46 | ug/l  |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.0 | 0.21 | ug/l  |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.0 | 0.24 | ug/l  |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.0 | 0.34 | ug/l  |
| 86-74-8   | Carbazole                  | ND     | 1.0 | 0.23 | ug/l  |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: S-37

Lab Sample ID: JC22206-6

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 06/13/16 Date Received: 06/15/16

Percent Solids: n/a

### ABN TCL Special List

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q            |
|-----------|-----------------------------|--------|--------|------|-------|--------------|
| 105-60-2  | Caprolactam                 | ND     | 2.0    | 0.65 | ug/l  |              |
| 218-01-9  | Chrysene                    | ND     | 1.0    | 0.18 | ug/l  |              |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.0    | 0.28 | ug/I  |              |
| 111-44-4  | bis(2-Chloroethyi)ether     | ND     | 2.0    | 0.25 | ug/l  |              |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.0    | 0.40 | ug/l  |              |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.0    | 0.37 | ug/i  |              |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.0    | 0.55 | ug/i  |              |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 1.0    | 0.48 | ug/I  |              |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.0    | 0.51 | ug/l  |              |
| 123-91-1  | 1,4-Dioxane                 | 25.2   | 1.0    | 0.66 | ug/l  |              |
| 53-70-3   | Dibenzo(a,h)anthracene      | ND     | 1.0    | 0.33 | ug/l  |              |
| 132-64-9  | Dibenzofuran                | ND     | 5.0    | 0.22 | ug/l  |              |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.0    | 0.50 | ug/l  |              |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.0    | 0.23 | ug/l  |              |
| 84-66-2   | Diethyl phthalate           | ND     | 2.0    | 0.26 | ug/l  |              |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.0    | 0.22 | ug/l  |              |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | 2.0    | 2.0    | 1.7  | ug/l  |              |
| 206-44-0  | Fluoranthene                | ND     | 1.0    | 0.17 | ug/i  |              |
| 86-73-7   | Fluorene                    | ND     | 1.0    | 0.17 | ug/l  |              |
| 118-74-1  | Hexachlorobenzene           | ND     | 1.0    | 0.33 | ug/l  |              |
| 87-68-3   | Hexachlorobutadiene         | ND     | 1.0    | 0.49 | ug/l  |              |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 10     | 2.8  | ug/l  |              |
| 67-72-1   | Hexachloroethane            | ND     | 2.0    | 0.39 | ug/l  |              |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.0    | 0.33 | ug/l  |              |
| 78-59-1   | Isophorone                  | ND     | 2.0    | 0.28 | ug/l  |              |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 1.0    | 0.26 | ug/l  |              |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.0    | 0.21 | ug/l  |              |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.0    | 0.28 | ug/l  |              |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.0    | 0.39 | ug/l  | COCHOO       |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.0    | 0.44 | ug/l  | . Pl         |
| 98-95-3   | Nitrobenzene                | ND     | 2.0    | 0.64 | ug/I  | 13/          |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.0    | 0.48 | ug/l  | fael Infante |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.0    | 0.22 | ug/l  | Mendez       |
| 85-01-8   | Phenanthrene                | ND     | 1.0    | 0.18 | ug/l  | K = 1888     |
| 129-00-0  | Pyrene                      | ND     | 1.0    | 0.22 | ug/l  | 2.           |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.0    | 0.37 | ug/I  | CO LICENCY   |
| CAS No.   | Surrogate Recoveries        | Run# i | Run# 2 | Lim  | its   |              |
| 367-12-4  | 2-Fluorophenol              | 55%    |        | 14-8 | 8%    |              |



MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Client Sample ID: **S-37** Lab Sample ID:

JC22206-6

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 06/13/16 Date Received: 06/15/16

Percent Solids: n/a

### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 4165-62-2 | Phenol-d5            | 36%    |        | 10-110% |
| 118-79-6  | 2,4,6-Tribromophenol | 104%   |        | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 78%    |        | 32-128% |
| 321-60-8  | 2-Fiuorobiphenyl     | 75%    |        | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 90%    |        | 10-126% |



E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

## Report of Analysis

Ву

LK

Prep Date

06/17/16

Page 1 of 1

Client Sample ID: S-37

Lab Sample ID: JC22206-6

Matrix: Method: AQ - Ground Water

1

SW846 8270D BY SIM SW846 3510C

Date Sampled: 06/13/16 Date Received: 06/15/16

Percent Solids:

Project: BMSMC, Building 5 Area, PR

4M66469.D

File ID DF Analyzed

Prep Batch **Analytical Batch** OP94859A E4M2989

Run #1 Run #2

**Initial Volume** Final Volume 1:0 ml Run #1 1000 ml

Run #2

CAS No. Compound Result RL MDL Units Q

06/29/16

91-20-3 Naphthalene ND 0.10 0.029ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 86% 24-125% 321-60-8 2-Fluorobiphenyl 90% 19-127% 1718-51-0 Terphenyl-d14 97% 10-119%



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

Page 1 of 1

Client Sample ID: S-37

Lab Sample ID: JC22206-6

Matrix: Method: AQ - Ground Water

SW846-8015C (DAI)

Project:

BMSMC, Building 5 Area, PR

Date Sampled:

06/13/16

Date Received:

06/15/16

Percent Solids: n/a

|        | File ID    | DF | Analyzed | Ву  | Prep Date | Prep Batch | Analytical Batch |
|--------|------------|----|----------|-----|-----------|------------|------------------|
| Run #1 | GH105535.D | 1  | 06/16/16 | XPL | n/a       | n/a        | GGH5324          |
| Run #2 |            |    |          |     |           |            |                  |

### Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL    | Units | Q |
|----------|----------------------|--------|--------|--------|-------|---|
| 64-17-5  | Ethanol              | ND     | 100    | 55     | ug/l  |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 100    | 36     | ug/l  |   |
| 67-63-0  | Isopropyl Alcohol    | ND     | 100    | 68     | ug/l  |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 100    | 43     | ug/l  |   |
| 71-36-3  | n-Butyl Alcohol      | ND     | 100    | 87     | ug/l  |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 100    | 66     | ug/l  |   |
| 67-56-1  | Methanol             | ND     | 200    | 71     | ug/l  |   |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Limits |       |   |
| 111-27-3 | Hexanol              | 104%   |        | 56-1   | 45%   |   |
| 111-27-3 | Hexanol              | 107%   |        | 56-1   | 45%   |   |





MDL = Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

DS

Page 1 of 1

Client Sample ID: S-37

Lab Sample ID:

Matrix:

JC22206-6

Method:

AQ - Ground Water

1

SW846 8081B SW846 3510C

Date Sampled: Date Received:

06/13/16 06/15/16

Percent Solids: n/a

Prep Date

06/17/16

Project:

BMSMC, Building 5 Area, PR

File ID DF Analyzed

**Analytical Batch** Prep Batch OP94861 G6G1047

Run #1 Run #2

Initial Volume

960 ml

- 6G36623.D

Final Volume

06/27/16

Run #1

Run #2

10.0 ml

### Pesticide TCL List

| CAS No.    | Compound             | Result | RL     | MDL     | Units | Q |
|------------|----------------------|--------|--------|---------|-------|---|
| 309-00-2   | Aldrin               | ND     | 0.010  | 0.0063  | ug/l  |   |
| 319-84-6   | alpha-BHC            | ND     | 0.010  | 0.0063  | ug/l  |   |
| 319-85-7   | beta-BHC             | ND     | 0.010  | 0.0059  | ug/l  |   |
| 319-86-8   | delta-BHC            | ND     | 0.010  | 0.0048  | ug/l  |   |
| 58-89-9    | gamma-BHC (Lindane)  | ND     | 0.010  | 0.0029  | ug/l  |   |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.010  | 0.0048  | ug/l  |   |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.010  | 0.0048  | ug/l  |   |
| 60-57-1    | Dieldrin             | ND     | 0.010  | 0.0038  | ug/l  |   |
| 72-54-8    | 4,4'-DDD             | ND     | 0.010  | 0.0040  | ug/l  |   |
| 72-55-9    | 4,4'-DDE             | ND     | 0.010  | 0.0064  | ug/l  |   |
| 50-29-3    | 4,4'-DDT             | ND     | 0.010  | 0.0052  | ug/i  |   |
| 72-20-8    | Endrin               | ND     | 0.010  | 0.0053  | ug/l  |   |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.010  | 0.0055  | ug/l  |   |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.010  | 0.0053  | ug/l  |   |
| 53494-70-5 | Endrin ketone        | ND     | 0.010  | 0.0053  | ug/l  |   |
| 959-98-8   | Endosulfan-I         | ND     | 0.010  | 0.0052  | ug/l  |   |
| 33213-65-9 | Endosulfan-II        | ND     | 0.010  | 0.0045  | ug/l  |   |
| 76-44-8    | Heptachlor           | ND     | 0.010  | 0.0040  | ug/l  |   |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.010  | 0.0068  | ug/l  |   |
| 72-43-5    | Methoxychlor         | ND     | 0.021  | 0.0059  | ug/l  |   |
| 8001-35-2  | Toxaphene            | ND     | 0.26   | 0.19    | ug/l  |   |
| CAS No.    | Surrogate Recoveries | Run#1  | Run# 2 | Limits  |       |   |
| 877-09-8   | Tetrachloro-m-xylene | 105%   |        | 26-13   | 32%   |   |
| 877-09-8   | Tetrachloro-m-xylene | 103%   |        | 26-132% |       |   |
| 2051-24-3  | Decachlorobiphenyl   | 91%    |        | 10-118% |       |   |
| 2051-24-3  | Decachlorobiphenyl   | 98%    |        | 10-11   |       | ١ |
|            |                      |        |        |         |       |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

Page 1 of 3

Client Sample ID: S-35

Lab Sample ID: JC22206-7

Matrix:

AQ - Ground Water

Date Sampled: Date Received:

Q

06/13/16 06/15/16

Method: Project:

SW846 8270D SW846 3510C

Percent Solids:

| Ľ | _ | -, | <br>_ | _ |
|---|---|----|-------|---|
| = |   | _  | <br>_ | _ |
| г |   |    |       |   |

BMSMC, Building 5 Area, PR

File ID DF By Prep Date **Analytical Batch** Analyzed Prep Batch Run #1 F158387.D 1 06/27/16 BP 06/17/16 OP94859 EF6666 Run #2 F158442.D 10 06/28/16 BP 06/17/16 OP94859 **EF6668** 

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2 1000 ml 1.0 ml

### **ABN TCL Special List**

| CAS No.   | Compound                   | Result | RL  | MDL  | Units |
|-----------|----------------------------|--------|-----|------|-------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.0 | 0.82 | ug/l  |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.0 | 0.89 | ug/l  |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.0 | 1.3  | ug/l  |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.0 | 2.4  | ug/l  |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 10  | 1.6  | ug/l  |
| 534-52-1  | 4.6-Dinitro-o-cresol       | ND     | 5.0 | 1.3  | ug/l  |
| 95-48-7   | 2-Methylphenol             | ND     | 2.0 | 0.89 | ug/l  |
|           | 3&4-Methylphenol           | ND     | 2.0 | 0.88 | ug/l  |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.0 | 0.96 | ug/l  |
| 100-02-7  | 4-Nitrophenol              | ND     | 10  | 1.2  | ug/i  |
| 87-86-5   | Pentachlorophenol          | ND     | 5.0 | 1.4  | ug/l  |
| 108-95-2  | Phenol                     | ND     | 2.0 | 0.39 | ug/l  |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.0 | 1.5  | ug/l  |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND -   | 5.0 | 1.3  | ug/l  |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.0 | 0.92 | ug/l  |
| 83-32-9   | Acenaphthene               | ND     | 1.0 | 0.19 | ug/l  |
| 208-96-8  | Acenaphthylene             | ND     | 1.0 | 0.14 | ug/l  |
| 98-86-2   | Acetophenone               | ND     | 2.0 | 0.21 | ug/l  |
| 120-12-7  | Anthracene                 | ND     | 1.0 | 0.21 | ug/l  |
| 1912-24-9 | Atrazine                   | ND     | 2.0 | 0.45 | ug/l  |
| 100-52-7  | Benzaldehyde               | ND     | 5.0 | 0.29 | ug/l  |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.0 | 0.20 | ug/l  |
| 50-32-8   | Benzo(a)pyrene             | ND     | 1.0 | 0.21 | ug/l  |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.0 | 0.34 | ug/l  |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.0 | 0.40 | ug/l  |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.0 | 0.46 | ug/l  |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.0 | 0.21 | ug/l  |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.0 | 0.24 | ug/l  |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.0 | 0.34 | ug/l  |
| 86-74-8   | Carbazole                  | ND     | 1.0 | 0.23 | ug/l  |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

### Report of Analysis

Client Sample ID: S-35 Lab Sample ID: JC22206-7

Matrix: A(
Method: SV

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 06/ Date Received: 06/

06/13/16 : 06/15/16

Percent Solids: n/a

#### ABN TCL Special List

| CAS No.   | Compound                      | Result | RL     | MDL   | Units | Q    |
|-----------|-------------------------------|--------|--------|-------|-------|------|
| 105-60-2  | Caprolactam                   | ND     | 2.0    | 0.65  | ug/l  |      |
| 218-01-9  | Chrysene                      | ND     | 1.0    | 0.18  | ug/l  |      |
| 111-91-1  | bis(2-Chloroethoxy)methane    | ND     | 2.0    | 0.28  | ug/l  |      |
| 111-44-4  | bis(2-Chloroethyl)ether       | ND     | 2.0    | 0.25  | ug/l  |      |
| 108-60-1  | bis (2-Chloroisopropyl) ether | ND     | 2.0    | 0.40  | ug/l  |      |
| 7005-72-3 | 4-Chlorophenyl phenyl ether   | ND     | 2.0    | 0.37  | ug/l  |      |
| 121-14-2  | 2,4-Dinitrotoluene            | ND     | 1.0    | 0.55  | ug/l  |      |
| 606-20-2  | 2,6-Dinitrotoluene            | ND     | 1.0    | 0.48  | ug/l  |      |
| 91-94-1   | 3,3'-Dichlorobenzidine        | ND     | 2.0    | 0.51  | ug/l  |      |
| 123-91-1  | 1,4-Dioxane                   | 307 a  | 10     | 6.6   | ug/l  |      |
| 53-70-3   | Dibenzo(a,h)anthracene        | ND     | 1.0    | 0.33  | ug/I  |      |
| 132-64-9  | Dibenzofuran                  | ND     | 5.0    | 0.22  | ug/l  |      |
| 84-74-2   | Di-n-butyl phthalate          | ND     | 2.0    | 0.50  | ug/l  |      |
| 117-84-0  | Di-n-octyl phthalate          | ND     | 2.0    | 0.23  | ug/l  |      |
| 84-66-2   | Diethyl phthalate             | ND     | 2.0    | 0.26  | ug/l  |      |
| 131-11-3  | Dimethyl phthalate            | ND     | 2.0    | 0.22  | ug/l  |      |
| 117-81-7  | bis(2-Ethylhexyl)phthalate    | 2.5    | 2.0    | 1.7   | ug/l  |      |
| 206-44-0  | Fluoranthene                  | ND     | 1.0    | 0.17  | ug/l  |      |
| 86-73-7   | Fiuorene                      | ND     | 1.0    | 0.17  | ug/l  |      |
| 118-74-1  | Hexachlorobenzene             | ND     | 1.0    | 0.33  | ug/l  |      |
| 87-68-3   | Hexachlorobutadiene           | ND     | 1.0    | 0.49  | ug/l  |      |
| 77-47-4   | Hexachlorocyclopentadiene     | ND     | 10     | 2.8   | ug/l  |      |
| 67-72-1   | Hexachloroethane              | ND     | 2.0    | 0.39  | ug/l  |      |
| 193-39-5  | Indeno(1,2,3-cd)pyrene        | ND     | 1.0    | 0.33  | ug/l  |      |
| 78-59-1   | Isophorone                    | ND     | 2.0    | 0.28  | ug/l  |      |
| 90-12-0   | 1-Methylnaphthalene           | ND     | 1.0    | 0.26  | ug/l  |      |
| 91-57-6   | 2-Methylnaphthalene           | ND     | 1.0    | 0.21  | ug/l  |      |
| 88-74-4   | 2-Nitroaniline                | ND     | 5.0    | 0.28  | ug/l  |      |
| 99-09-2   | 3-Nitroaniline                | ND     | 5.0    | 0.39  | ug/l  |      |
| 100-01-6  | 4-Nitroaniline                | ND     | 5.0    | 0.44  | ug/l  |      |
| 98-95-3   | Nitrobenzene                  | ND     | 2.0    | 0.64  | ug/l  |      |
| 621-64-7  | N-Nitroso-di-n-propylamine    | ND     | 2.0    | 0.48  | ug/l  |      |
| 86-30-6   | N-Nitrosodiphenylamine        | ND     | 5.0    | 0.22  | ug/l  |      |
| 85-01-8   | Phenanthrene                  | ND     | 1.0    | 0.18  | ug/l  | 09   |
| 129-00-0  | Pyrene                        | ND     | 1.0    | 0.22  | ug/l  | 13   |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene    | ND     | 2.0    | 0.37  | ug/l  | 1-11 |
| CAS No.   | Surrogate Recoveries          | Run# I | Run# 2 | Limi  | ts    | 13   |
| 367-12-4  | 2-Fluorophenol                | 52%    | 51%    | 14-88 | 3%    | 14   |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Méndez

## Report of Analysis

Page 3 of 3

Client Sample ID: S-35 Lab Sample ID: JC22

JC22206-7

Matrix:

AQ - Ground Water

Date Sampled: 06/13/16 Date Received: 06/15/16

Percent Solids: n/a

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

#### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run#1 | Run# 2 | Limits  |
|-----------|----------------------|-------|--------|---------|
| 4165-62-2 | Phenol-d5            | 34%   | 35%    | 10-110% |
| 118-79-6  | 2,4,6-Tribromophenol | 97%   | 92%    | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 78%   | 82%    | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 75%   | 81%    | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 82%   | 90%    | 10-126% |

#### (a) Result is from Run# 2



321-60-8

1718-51-0

2-Fluorobiphenyl

Terphenyl-d14

### Report of Analysis

Page 1 of 1

| Client Sample ID:<br>Lab Sample ID:<br>Matrix:<br>Method:<br>Project: |                  | SW846       | round Wate<br>8270D BY |                      |          |                   | Date Sampled: 06/13/16 Date Received: 06/15/16 Percent Solids: n/a |                        |                             |  |  |
|-----------------------------------------------------------------------|------------------|-------------|------------------------|----------------------|----------|-------------------|--------------------------------------------------------------------|------------------------|-----------------------------|--|--|
| Run #1<br>Run #2                                                      | File ID<br>4M664 |             | DF<br>1                | Analyzed<br>06/29/16 | By<br>LK | Prep D<br>06/17/1 |                                                                    | Prep Batch<br>OP94859A | Analytical Batch<br>E4M2989 |  |  |
| Run #1<br>Run #2                                                      | Initial 1000 m   | Volume<br>I | Final Vo               | lume                 |          |                   |                                                                    |                        |                             |  |  |
| CAS No.                                                               | Comp             | ound        |                        | Result               | RL       | MDL               | Units                                                              | Q                      |                             |  |  |
| 91-20-3                                                               | Napht            | halene      |                        | ND                   | 0.10     | 0.029             | ug/l                                                               |                        |                             |  |  |
| CAS No.                                                               | Surro            | gate Rec    | overies                | Run# 1               | Run# 2   | Lim               | its                                                                |                        |                             |  |  |
| 4165-60-0                                                             | Nitrob           | enzene-d    | 15                     | 78%                  |          | 24-1              | 25%                                                                |                        |                             |  |  |

83%

74%



 $ND \,=\, Not\; detected$ 

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

19-127%

10-119%

B = Indicates analyte found in associated method blank

### Report of Analysis

Page 1 of 1

Client Sample ID: S-35

Lab Sample ID: JC22206-7

Matrix: Method: Project:

AQ - Ground Water

SW846-8015C (DAI)

Date Sampled: 06/13/16 Date Received: 06/15/16

BMSMC, Building 5 Area, PR

Percent Solids: n/a

|        | 71'1 TT-   |    |          |     |           |            |                  |
|--------|------------|----|----------|-----|-----------|------------|------------------|
| 1      | File ID    | DF | Analyzed | Ву  | Prep Date | Prep Batch | Analytical Batch |
| Run #1 | GH105536.D | 1  | 06/16/16 | XPL | n/a       | n/a        | GGH5324          |
| Run #2 |            |    |          |     |           |            |                  |

### Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL | Units | Q |
|----------|----------------------|--------|--------|-----|-------|---|
| 64-17-5  | Ethanol              | ND     | 100    | 55  | ug/l  |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 100    | 36  | ug/l  |   |
| 67-63-0  | Isopropyl Alcohol    | ND     | 100    | 68  | ug/l  |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 100    | 43  | ug/l  |   |
| 71-36-3  | n-Butyl Alcohol      | ND     | 100    | 87  | ug/l  |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 100    | 66  | ug/l  |   |
| 67-56-1  | Methanol             | ND     | 200    | 71  | ug/l  |   |
| CAS No.  | Surrogate Recoveries | Run#1  | Run# 2 | Lin | rits  |   |
| 111-27-3 | Hexanol              | 106%   |        | 56- | 145%  |   |
| 111-27-3 | Hexanol              | 115%   |        |     | 145%  |   |
|          |                      |        |        |     |       |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Page 1 of 1

Client Sample ID: S-35 Lab Sample ID:

JC22206-7

AQ - Ground Water

Date Sampled: 06/13/16

Matrix: Method:

SW846 8081B SW846 3510C

Date Received: 06/15/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

Run #1

File ID 6G36624.D

Analyzed 06/27/16

By Prep Date DS 06/17/16

Prep Batch OP94861

Q

**Analytical Batch** G6G1047

Run #2

Run #1

Run #2

Initial Volume Final Volume

930 ml

10.0 ml

DF

1

Pesticide TCL List

| CAS No.    | Compound             | Result | RL     | MDL    | Units |
|------------|----------------------|--------|--------|--------|-------|
| 309-00-2   | Aldrin               | ND     | 0.011  | 0.0065 | ug/l  |
| 319-84-6   | alpha-BHC            | ND     | 0.011  | 0.0065 | ug/l  |
| 319-85-7   | beta-BHC             | ND     | 0.011  | 0.0061 | ug/l  |
| 319-86-8   | delta-BHC            | ND     | 0.011  | 0.0049 | ug/l  |
| 58-89-9    | gamma-BHC (Lindane)  | ND     | 0.011  | 0.0030 | ug/i  |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.011  | 0.0050 | ug/l  |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.011  | 0.0049 | ug/I  |
| 60-57-1    | Dieldrin             | ND     | 0.011  | 0.0039 | ug/I  |
| 72-54-8    | 4,4'-DDD             | ND     | 0.011  | 0.0041 | ug/l  |
| 72-55-9    | 4,4'-DDE             | ND     | 0.011  | 0.0066 | ug/l  |
| 50-29-3    | 4,4'-DDT             | ND     | 0.011  | 0.0053 | ug/l  |
| 72-20-8    | Endrin               | ND     | 0.011  | 0.0054 | ug/l  |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.011  | 0.0056 | ug/l  |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.011  | 0.0055 | ug/l  |
| 53494-70-5 | Endrin ketone        | ND     | 0.011  | 0.0055 | ug/l  |
| 959-98-8   | Endosulfan-I         | ND     | 0.011  | 0.0053 | ug/l  |
| 33213-65-9 | Endosulfan-II        | ND     | 0.011  | 0.0046 | ug/l  |
| 76-44-8    | Heptachlor           | ND     | 0.011  | 0.0041 | ug/l  |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.011  | 0.0070 | ug/l  |
| 72-43-5    | Methoxychlor         | ND     | 0.022  | 0.0061 | ug/I  |
| 8001-35-2  | Toxaphene            | ND     | 0.27   | 0.20   | ug/l  |
| CAS No.    | Surrogate Recoveries | Run# 1 | Run# 2 | Limi   | ts    |
| 877-09-8   | Tetrachloro-m-xylene | 114%   |        | 26-13  | 32%   |
| 877-09-8   | Tetrachloro-m-xylene | 110%   |        | 26-13  | 32%   |
| 2051-24-3  | Decachlorobiphenyl   | 107%   |        | 10-11  | 18%   |
|            |                      |        |        |        |       |



ND = Not detected

2051-24-3

MDL = Method Detection Limit

110%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-118%

B = Indicates analyte found in associated method blank

### Report of Analysis

By

BP

AC

5.0

Prep Date

06/17/16

06/28/16

0.82

ug/l

Page 1 of 3

Client Sample ID: S-32

Lab Sample ID: JC22206-8

Matrix:

AQ - Ground Water

DF

1

1

Date Sampled: Date Received:

06/13/16 06/15/16

Method:

SW846 8270D SW846 3510C

Percent Solids:

Project:

Run #1

Run #2 a

95-57-8

59-50-7

95-95-4

88-06-2

83-32-9

98-86-2

208-96-8

120-12-7

100-52-7

56-55-3

50-32-8

205-99-2

191-24-2

207-08-9

101-55-3

85-68-7

92-52-4

91-58-7

86-74-8

106-47-8

1912-24-9

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch** 

OP94859 EF6666 EZ5596 OP95160

Final Volume **Initial Volume** 

File ID

F158388.D

Z111971.D

2-Chlorophenol

Run #1 1000 ml Run #2 930 ml

1.0 ml 1.0 ml

ABN TCL Special List

CAS No. Compound Result RL MDL Units Q

ND

Analyzed

06/27/16

06/29/16

4-Chloro-3-methyl phenol ND 5.0 0.89 ug/l 120-83-2 2,4-Dichlorophenol ND 2.0 1.3 ug/I 105-67-9 2,4-Dimethylphenol 67.8 5.0 2.4 ug/l 51-28-5 2,4-Dinitrophenol ND 10 1.6 ug/l 534-52-1 4,6-Dinitro-o-cresol ND 5.0 1.3 ug/l 95-48-7 2-Methylphenol 1.1 2.0 0.89 ug/l

3&4-Methylphenol ND 2.0 0.88 ug/l 88-75-5 2-Nitrophenol ND 5.0 0.96 ug/I 100-02-7 4-Nitrophenol ND 10 1.2 ug/l 87-86-5 Pentachlorophenol ND 5.0 1.4 ug/l 108-95-2 Phenol ND 2.0 0.39 ug/l 58-90-2 2,3,4,6-Tetrachlorophenol ND 5.0 1.5 ug/l

2,4,5-Trichlorophenol ND 5.0 1.3 ug/l 2,4,6-Trichlorophenol ND 5.0 0.92 ug/l Acenaphthene ND 1.0 0.19ug/l Acenaphthylene ND 1.0 0.14ug/l Acetophenone 2.0 33.1 0.21 ug/l ND 1.0 0.21 ug/l

Anthracene Atrazine ND 2.0 0.45 ug/l Benzaldehyde ND 5.0 0.29ug/l Benzo(a)anthracene ug/l ND 1.0 0.20Benzo(a) pyrene ND 1.0 0.21 ug/l Benzo(b)fluoranthene ND 1.0 0.21 ug/l Benzo(g,h,i)perylene ND

ND

ND

ND

ND

ND

ND

ND

1.0 0.34 ug/l 1.0 0.21 ug/l 2.0 0.40 ug/l 2.0 0.46 ug/l 1.0 0.21 ug/l

0.24

0.34

0.23

2.0

5.0

1.0

fael Infant Méndez IC = 1886

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Benzo(k)fluoranthene

Butyl benzyl phthalate

2-Chloronaphthalene

1,1'-Biphenyl

4-Chloroaniline

Carbazole

4-Bromophenyl phenyl ether

J = Indicates an estimated value

ug/l

ug/l

ug/l

B = Indicates analyte found in associated method blank

### Report of Analysis

Client Sample ID: S-32

Lab Sample ID: JC22206-8

Matrix:

AQ - Ground Water

Method: SW846 8270D SW846 3510C Project:

BMSMC, Building 5 Area, PR

Date Sampled: 06/13/16 Date Received: 06/15/16

Percent Solids: n/a

#### ABN TCL Special List

| CAS No.   | Compound                      | Result   | RL                     | MDL          | Units | Q |
|-----------|-------------------------------|----------|------------------------|--------------|-------|---|
| 105-60-2  | Caprolactam                   | ND       | 2.0                    | 0.65         | ug/l  |   |
| 218-01-9  | Chrysene                      | ND       | 1.0                    | 0.18         | ug/l  |   |
| 111-91-1  | bis(2-Chloroethoxy)methane    | ND       | 2.0                    | 0.28         | ug/l  |   |
| 111-44-4  | bis(2-Chloroethyl)ether       | ND       | 2.0                    | 0.25         | ug/l  |   |
| 108-60-1  | bis (2-Chloroisopropyl) ether | ND       | 2.0                    | 0.40         | ug/l  |   |
| 7005-72-3 | 4-Chlorophenyl phenyl ether   | ND       | 2.0                    | 0.37         | ug/l  |   |
| 121-14-2  |                               |          | 1.0                    | 0.55         | ug/l  |   |
| 606-20-2  | 2,6-Dinitrotoluene            | ND<br>ND | 1.0                    | 0.48         | ug/l  |   |
| 91-94-1   | 3,3'-Dichlorobenzidine        | ND       | 2.0                    | 0.51         | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene        | ND       | 1.0                    | 0.33         | ug/l  |   |
| 132-64-9  | Dibenzofuran                  | ND       | 5.0                    | 0.22         | ug/l  |   |
| 84-74-2   | Di-n-butyl phthalate          | ND       | 2.0                    | 0.50         | ug/l  |   |
| 117-84-0  | Di-n-octyl phthalate          | ND       | 2.0                    | 0.23         | ug/l  |   |
| 84-66-2   | Diethyl phthalate             | ND       | 2.0                    | 0.26         | ug/l  |   |
| 131-11-3  | Dimethyl phthalate            | ND       | 2.0                    | 0.22         | ug/l  |   |
| 117-81-7  |                               |          | 2.0                    | 1.7          | ug/l  |   |
| 206-44-0  |                               |          | 1.0                    | 0.17         | ug/l  |   |
| 86-73-7   | Fluorene                      | ND<br>ND | 1.0                    | 0.17         | ug/l  |   |
| 118-74-1  | Hexachlorobenzene             | ND       | 1.0                    | 0.33         | ug/l  |   |
| 87-68-3   | Hexachlorobutadiene           | ND       | 1.0                    | 0.49         | ug/l  |   |
| 77-47-4   | Hexachlorocyclopentadiene     | ND       | 10                     | 2.8          | ug/l  |   |
| 67-72-1   | Hexachloroethane              | ND       | 2.0                    | 0.39         | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene        | ND       | 1.0                    | 0.33         | ug/l  |   |
| 78-59-1   | Isophorone                    | ND       | 2.0                    | 0.28         | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene           | ND       | 1.0                    | 0.26         | ug/l  |   |
| 91-57-6   | 2-Methylnaphthalene           | ND       | 1.0                    | 0.21         | ug/l  |   |
| 88-74-4   | 2-Nitroaniline                | ND       | 5.0                    | 0.28         | ug/l  |   |
| 99-09-2   | 3-Nitroaniline                | ND       | 5.0                    | 0.39         | ug/l  |   |
| 100-01-6  | 4-Nitroaniline                | ND       | 5.0                    | 0.44         | ug/l  |   |
| 98-95-3   | Nitrobenzene                  | ND       | 2.0                    | 0.64         | ug/l  |   |
| 621-64-7  | N-Nitroso-di-n-propylamine    | ND       | 2.0                    | 0.48         | ug/l  |   |
| 86-30-6   | N-Nitrosodiphenylamine        | ND       | 5.0                    | 0.22         | ug/l  |   |
| 85-01-8   | Phenanthrene                  | ND       | 1.0                    | 0.18         | ug/l  |   |
| 129-00-0  | Pyrene                        | ND       | 1.0                    | 0.22         | ug/l  |   |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene    | ND       | 2.0                    | 0.37         | ug/l  |   |
|           | 1,0,1,0 1 11110110100111111   |          | B.0                    | 0.01         | -6/·  |   |
| CAS No.   | Surrogate Recoveries          | Run# 1   | Run# 2                 | Lim          | its   |   |
| 367-12-4  | 2-Fluorophenol                | 4% c     | 6% b                   | 14-8         | 8%    |   |
| 4165-62-2 | Phenol-d5                     | 33%      | 41%                    |              | 10%   |   |
|           | 2-Fluorophenol<br>Phenol-d5   |          | 6% <sup>b</sup><br>41% | 14-8<br>10-1 |       |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Client Sample ID:

**S-32** JC22206-8

Lab Sample ID:

AQ - Ground Water

Matrix: Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 06/13/16 Date Received: 06/15/16

Percent Solids: n/a

#### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run#1 | Run# 2 | Limits  |
|-----------|----------------------|-------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 108%  | 82%    | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 91%   | 85%    | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 88%   | 76%    | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 82%   | 63%    | 10-126% |

- (a) Confirmation run for surrogate recoveries.
- (b) Outside control limits due to matrix interference.
- (c) Outside control limits due to matrix interference. Confirmed by re-extraction.



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

LK

06/17/16

10-119%

Page 1 of 1

|   |   | nt | Sample ID: | S-32 |
|---|---|----|------------|------|
| _ | - | _  | 4 550      | ***  |

Lab Sample ID:

JC22206-8

Matrix:

Method:

AQ - Ground Water

1

SW846 8270D BY SIM SW846 3510C

06/30/16

Date Sampled: 06/13/16

Date Received: 06/15/16 Percent Solids: n/a

BMSMC, Building 5 Area, PR

Project: File ID DF Analyzed By Prep Date

Prep Batch **Analytical Batch** OP94859A E4M2990

Run #1 Run #2

Initial Volume **Final Volume** Run #1 1000 ml 1.0 ml

Terphenyl-d14

4M66487.D

Run #2

1718-51-0

CAS No. Compound Result RL MDL Units Q 91-20-3 Naphthalene 0.372 0.10 0.029ug/l 123-91-1 1,4-Dioxane 3.18 0.10 0.049ug/l CAS No. Surrogate Recoveries Run#1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 75% 24-125% 321-60-8 2-Fluorobiphenyl 59% 19-127%

94%



ND = Not detected

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

### Report of Analysis

Page 1 of 1

Client Sample ID: S-32

Lab Sample ID: JC22206-8

Matrix:

AQ - Ground Water

Method: Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled:

06/13/16

Date Received:

06/15/16

Percent Solids: n/a

File ID DF Analyzed Ву Prep Date Prep Batch **Analytical Batch** GH105537.D Run #1 1 06/16/16 XPL n/a n/a GGH5324 Run #2

#### Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL    | Units | Q |
|----------|----------------------|--------|--------|--------|-------|---|
| 64-17-5  | Ethanol              | ND     | 100    | 55     | ug/l  |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 100    | 36     | ug/l  |   |
| 67-63-0  | Isopropyl Alcohol    | ND     | 100    | 68     | ug/l  |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 100    | 43     | ug/l  |   |
| 71-36-3  | n-Butyl Alcohol      | ND     | 100    | 87     | ug/l  |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 100    | 66     | ug/l  |   |
| 67-56-1  | Methanol             | ND     | 200    | 71     | ug/l  |   |
| CAS No.  | Surrogate Recoveries | Run#1  | Run# 2 | Limits |       |   |
| 111-27-3 | Hexanol              | 96%    |        | 56-1   | 45%   |   |
| 111-27-3 | Hexanol              | 128%   |        | 56-1   | 45%   |   |



E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

DS

06/17/16

Page 1 of 1

Client Sample ID: S-32

Lab Sample ID: JC22206-8

Matrix: Method: AQ - Ground Water

1

SW846 8081B SW846 3510C

Date Sampled: Date Received: 06/15/16

Q

Percent Solids: n/a

Project:

Run #2 a

BMSMC, Building 5 Area, PR

File ID DF By Prep Date Analyzed Run #1 6G36670.D 5 06/28/16 KD 06/17/16

06/27/16

Prep Batch **Analytical Batch** OP94861 G6G1048 OP94861 G6G1047

06/13/16

Initial Volume Final Volume Run #1 960 ml 10.0 ml Run #2 960 ml 10.0 ml

6G36625.D

#### Pesticide TCL List

| CAS No.    | Compound             | Result  | RL     | MDŁ   | Units |
|------------|----------------------|---------|--------|-------|-------|
| OID IN.    | Compound             | Ittouit | ICL    | IVIDE | Omic  |
| 309-00-2   | Aldrin               | ND      | 0.052  | 0.031 | ug/l  |
| 319-84-6   | alpha-BHC            | ND      | 0.052  | 0.031 | ug/l  |
| 319-85-7   | beta-BHC             | ND      | 0.052  | 0.030 | ug/l  |
| 319-86-8   | delta-BHC            | ND      | 0.052  | 0.024 | ug/l  |
| 58-89-9    | gamma-BHC (Lindane)  | ND      | 0.052  | 0.014 | ug/l  |
| 5103-71-9  | alpha-Chlordane      | ND      | 0.052  | 0.024 | ug/l  |
| 5103-74-2  | gamma-Chlordane      | ND      | 0.052  | 0.024 | ug/l  |
| 60-57-1    | Dieldrin             | ND      | 0.052  | 0.019 | ug/l  |
| 72-54-8    | 4,4'-DDD             | ND      | 0.052  | 0.020 | ug/l  |
| 72-55-9    | 4,4'-DDE             | ND      | 0.052  | 0.032 | ug/i  |
| 50-29-3    | 4,4'-DDT             | ND      | 0.052  | 0.026 | ug/l  |
| 72-20-8    | Endrin               | ND      | 0.052  | 0.026 | ug/l  |
| 1031-07-8  | Endosulfan sulfate   | ND      | 0.052  | 0.027 | ug/l  |
| 7421-93-4  | Endrin aldehyde      | ND      | 0.052  | 0.027 | ug/l  |
| 53494-70-5 | Endrin ketone        | ND      | 0.052  | 0.026 | ug/l  |
| 959-98-8   | Endosulfan-I         | ND      | 0.052  | 0.026 | ug/l  |
| 33213-65-9 | Endosulfan-II        | ND      | 0.052  | 0.022 | ug/l  |
| 76-44-8    | Heptachlor           | ND      | 0.052  | 0.020 | ug/l  |
| 1024-57-3  | Heptachlor epoxide   | ND      | 0.052  | 0.034 | ug/l  |
| 72-43-5    | Methoxychlor         | ND      | 0.10   | 0.030 | ug/l  |
| 8001-35-2  | Toxaphene            | ND      | 1.3    | 0.96  | ug/l  |
| CAS No.    | Surrogate Recoveries | Run#1   | Run# 2 | Lim   | its   |
| 877-09-8   | Tetrachloro-m-xylene | 44%     | 13% b  | 26-1  | 32%   |
| 877-09-8   | Tetrachloro-m-xylene | 82%     | 39%    |       | 32%   |
| 2051-24-3  | Decachlorobiphenyl   | 31%     | 8% b   |       | 18%   |
| 2051-24-3  | Decachlorobiphenyl   | 49%     | 28%    | 10-1  | 18%   |
|            |                      |         |        |       |       |



(b) Outside control limits due to matrix interference with the internal standard.

MDL = Method Detection Limit



B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range



fael Infante Méndez IC = 1881

### Report of Analysis

Page 1 of 3

Client Sample ID: RA-10S Lab Sample ID: JC22206-9

Matrix: Method: AQ - Ground Water

Date Received: 06/15/16

Date Sampled: 06/14/16

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Percent Solids: n/a

Project:

|        | LHCID     | Dr  | Anatyzed | Бу | Prep Date |
|--------|-----------|-----|----------|----|-----------|
| Run #1 | F158389.D | 1 · | 06/27/16 | BP | 06/17/16  |
| Run #2 | F158443.D | 50  | 06/28/16 | BP | 06/17/16  |

Prep Batch **Analytical Batch** OP94859 EF6666 OP94859 EF6668

|     |    | Initial Volume | Final Volume |
|-----|----|----------------|--------------|
| Run | #1 | 1000 ml        | 1.0 ml       |
| Run | #2 | 1000 ml        | 1.0 ml       |

#### ABN TCL Special List

| CAS No.   | Compound                   | Result | RL  | MDL  | Unite |
|-----------|----------------------------|--------|-----|------|-------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.0 | 0.82 | ug/l  |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.0 | 0.89 | ug/l  |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.0 | 1.3  | ug/l  |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.0 | 2.4  | ug/l  |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 10  | 1.6  | ug/l  |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.0 | 1.3  | ug/l  |
| 95-48-7   | 2-Methylphenol             | ND     | 2.0 | 0.89 | ug/i  |
|           | 3&4-Methylphenol           | ND     | 2.0 | 0.88 | ug/l  |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.0 | 0.96 | ug/l  |
| 100-02-7  | 4-Nitrophenol              | ND     | 10  | 1.2  | ug/l  |
| 87-86-5   | Pentachlorophenol          | ND     | 5.0 | 1.4  | ug/l  |
| 108-95-2  | Phenoi                     | ND     | 2.0 | 0.39 | ug/l  |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.0 | 1.5  | ug/l  |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 5.0 | 1.3  | ug/l  |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.0 | 0.92 | ug/l  |
| 83-32-9   | Acenaphthene               | ND     | 1.0 | 0.19 | ug/l  |
| 208-96-8  | Acenaphthylene             | ND     | 1.0 | 0.14 | ug/l  |
| 98-86-2   | Acetophenone               | ND     | 2.0 | 0.21 | ug/l  |
| 120-12-7  | Anthracene                 | ND     | 1.0 | 0.21 | ug/l  |
| 1912-24-9 | Atrazine                   | ND     | 2.0 | 0.45 | ug/l  |
| 100-52-7  | Benzaldehyde               | ND     | 5.0 | 0.29 | ug/l  |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.0 | 0.20 | ug/I  |
| 50-32-8   | Велго(а)ругене             | ND     | 1.0 | 0.21 | ug/l  |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.0 | 0.34 | ug/i  |
| 207-08-9  | Benzo(k) fluoranthene      | ND     | 1.0 | 0.21 | ug/l  |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.0 | 0.40 | ug/l  |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.0 | 0.46 | ug/l  |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.0 | 0.21 | ug/l  |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.0 | 0.24 | ug/i  |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.0 | 0.34 | ug/l  |
| 86-74-8   | Carbazole                  | ND     | 1.0 | 0.23 | ug/l  |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

## Report of Analysis

Client Sample ID: RA-10S

Lab Sample ID: JC22206-9

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 06/14/16 Date Received: 06/15/16

Percent Solids: n/a

#### ABN TCL Special List

|           | -                           |        |        |      |       |                     |
|-----------|-----------------------------|--------|--------|------|-------|---------------------|
| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q                   |
| 105-60-2  | Caprolactam                 | ND     | 2.0    | 0.65 | ug/l  |                     |
| 218-01-9  | Chrysene                    | ND     | 1.0    | 0.18 | ug/l  |                     |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.0    | 0.28 | ug/l  |                     |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 2.0    | 0.25 | ug/l  |                     |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.0    | 0.40 | ug/l  |                     |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.0    | 0.37 | ug/l  |                     |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.0    | 0.55 | ug/l  |                     |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 1.0    | 0.48 | ug/l  |                     |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.0    | 0.51 | ug/l  |                     |
| 123-91-1  | 1,4-Dioxane                 | 1530 a | 50     | 33   | ug/l  |                     |
| 53-70-3   | Dibenzo(a,h)anthracene      | ND     | 1.0    | 0.33 | ug/l  |                     |
| 132-64-9  | Dibenzofuran                | ND     | 5.0    | 0.22 | ug/l  |                     |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.0    | 0.50 | ug/l  |                     |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.0    | 0.23 | ug/l  |                     |
| 84-66-2   | Diethyl phthalate           | ND     | 2.0    | 0.26 | ug/l  |                     |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.0    | 0.22 | ug/l  |                     |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 2.0    | 1.7  | ug/l  |                     |
| 206-44-0  | Fluoranthene                | ND     | 1.0    | 0.17 | ug/l  |                     |
| 86-73-7   | Fluorene                    | ND     | 1.0    | 0.17 | ug/l  |                     |
| 118-74-1  | Hexachlorobenzene           | ND     | 1.0    | 0.33 | ug/l  |                     |
| 87-68-3   | Hexachlorobutadiene         | ND     | 1.0    | 0.49 | ug/l  |                     |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 10     | 2.8  | ug/l  |                     |
| 67-72-1   | Hexachloroethane            | ND     | 2.0    | 0.39 | ug/l  |                     |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.0    | 0.33 | ug/l  |                     |
| 78-59-1   | Isophorone                  | ND     | 2.0    | 0.28 | ug/l  |                     |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 1.0    | 0.26 | ug/l  |                     |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.0    | 0.21 | ug/l  |                     |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.0    | 0.28 | ug/l  |                     |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.0    | 0.39 | ug/l  |                     |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.0    | 0.44 | ug/l  |                     |
| 98-95-3   | Nitrobenzene                | ND     | 2.0    | 0.64 | ug/l  |                     |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.0    | 0.48 | ug/l  | SOCIADO             |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.0    | 0.22 | ug/l  | all many            |
| 85-01-8   | Phenanthrene                | ND     | 1.0    | 0.18 | ug/l  | 3 120 1             |
| 129-00-0  | Pyrene                      | ND     | 1.0    | 0.22 | ug/l  | fael Infante        |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.0    | 0.37 | ug/I  | Méndez<br>IC = 1888 |
| CAS No.   | Surrogate Recoveries        | Run#1  | Run# 2 | Lim  | its   |                     |
| 367-12-4  | 2-Fluorophenol              | 54%    | 0% b   | 14-8 | 8%    | CO LICENCY          |
|           |                             |        |        |      |       |                     |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: RA-10S Lab Sample ID: JC22206-9

Matrix: AQ - 0

AQ - Ground Water SW846 8270D SW846 3510C Date Sampled: 06/14/16
Date Received: 06/15/16
Percent Solids: n/a

Method: Project:

BMSMC, Building 5 Area, PR

#### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 4165-62-2 | Phenol-d5            | 34%    | 0% b   | 10-110% |
| 118-79-6  | 2,4,6-Tribromophenol | 110%   | 0% b   | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 86%    | 0% b   | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 84%    | 0% b   | 35-119% |
| 1718-51-0 | Terphenyi-d14        | 90%    | 0% b   | 10-126% |

(a) Result is from Run# 2

(b) Outside control limits due to dilution.



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Page 1 of 1

| Client Sam<br>Lab Sampl<br>Matrix:<br>Method:<br>Project: | le ID: JC<br>Ac<br>S\  | N846  | 5-9<br>round Wa<br>8270D B |                     | 3510C    |                   | Date       |                        | 5/14/16<br>5/15/16<br>a     |
|-----------------------------------------------------------|------------------------|-------|----------------------------|---------------------|----------|-------------------|------------|------------------------|-----------------------------|
| Run #1<br>Run #2                                          | File ID<br>4M66472.    | D     | DF<br>1                    | Analyzed - 06/29/16 | By<br>LK | Prep D<br>06/17/1 |            | Prep Batch<br>OP94859A | Analytical Batch<br>E4M2989 |
| Run #1<br>Run #2                                          | Initial Vol<br>1000 ml | ume   | Final V<br>1.0 ml          | olume               |          |                   |            |                        |                             |
| CAS No.                                                   | Compour                | nd    |                            | Result              | RL       | MDL               | Units      | Q                      |                             |
| 91-20-3                                                   | Naphthale              | ene   |                            | 0.846               | 0.10     | 0.029             | ug/l       |                        |                             |
| CAS No.                                                   | Surrogat               | e Rec | overies                    | Run# 1              | Run# 2   | Lim               | its        |                        |                             |
| 4165-60-0<br>321-60-8                                     | Nitrobenz<br>2-Fluorob |       | _                          | 82%<br>88%          |          |                   | 25%<br>27% |                        |                             |

85%



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Terphenyl-d14

1718-51-0

J = Indicates an estimated value

10-119%

B = Indicates analyte found in associated method blank

Page 1 of 1

#### **SGS Accutest**

### Report of Analysis

Date Sampled: 06/14/16 06/15/16

Percent Solids:

Date Received:

Method: Project:

Matrix:

Client Sample ID:

Lab Sample ID:

BMSMC, Building 5 Area, PR

**RA-10S** 

JC22206-9

AQ - Ground Water

SW846-8015C (DAI)

File ID DF Analyzed By Prep Batch **Analytical Batch** Prep Date GH105573.D Run #1 XPL 1 06/20/16 n/a n/a **GGH5328** Run #2

#### Low Molecular Alcohol List

| CAS No.            | Compound                              | Result   | RL _       | MDL      | Units        | Q |
|--------------------|---------------------------------------|----------|------------|----------|--------------|---|
| 64-17-5            | Ethanol                               | ND       | 100        | 55       | ug/l         |   |
| 78-83-1<br>67-63-0 | Isobutyl Alcohol<br>Isopropyl Alcohol | ND<br>ND | 100<br>100 | 36<br>68 | ug/l         |   |
| 71-23-8            | n-Propyl Alcohol                      | ND       | 100        | 43       | ug/l<br>ug/l |   |
| 71-36-3            | n-Butyl Alcohol                       | ND       | 100        | 87       | ug/l         |   |
| 78-92-2            | sec-Butyl Alcohol                     | ND       | 100        | 66       | ug/l         |   |
| 67-56-1            | Methanol                              | ND       | 200        | 71       | ug/l         |   |
| CAS No.            | Surrogate Recoveries                  | Run# 1   | Run# 2     | Lim      | its          |   |
| 111-27-3           | Hexanol                               | 96%      |            | 56-1     | 45%          |   |
| 111-27-3           | Hexanol                               | 92%      |            | 56-1     | 45%          |   |
|                    |                                       |          |            |          |              |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

### Report of Analysis

DS

Page 1 of 1

G6G1047

Client Sample ID: Lab Sample ID:

**RA-10S** JC22206-9

Matrix:

AQ - Ground Water

SW846 8081B SW846 3510C

Date Sampled: 06/14/16 Date Received: 06/15/16

Percent Solids: n/a

OP94861

Method: Project:

BMSMC, Building 5 Area, PR

06/27/16

Ву **Analytical Batch** DF Analyzed Prep Date Prep Batch

-06/17/16

Run #1 Run #2

Initial Volume

6G36626.D

File ID

Final Volume 10.0 ml

930 ml

Run #1 Run #2

#### Pesticide TCL List

| CAS No.    | Compound             | Result | RL     | MDL    | Units        | Q    |
|------------|----------------------|--------|--------|--------|--------------|------|
| 309-00-2   | Aldrin               | ND     | 0.011  | 0.0065 | ug/l         |      |
| 319-84-6   | alpha-BHC            | ND     | 0.011  | 0.0065 | ug/l         |      |
| 319-85-7   | beta-BHC             | ND     | 0.011  | 0.0061 | ug/l         |      |
| 319-86-8   | delta-BHC            | ND     | 0.011  | 0.0049 | ug/l         |      |
| 58-89-9    | gamma-BHC (Lindane)  | ND     | 0.011  | 0.0030 | ug/l         |      |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.011  | 0.0050 | ug/l         |      |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.011  | 0.0049 | ug/l         |      |
| 60-57-1    | Dieldrin             | ND     | 0.011  | 0.0039 | ug/l         |      |
| 72-54-8    | 4,4'-DDD             | ND     | 0.011  | 0.0041 | ug/l         |      |
| 72-55-9    | 4,4'-DDE             | ND     | 0.011  | 0.0066 | ug/l         |      |
| 50-29-3    | 4,4'-DDT             | ND     | 0.011  | 0.0053 | ug/i         |      |
| 72-20-8    | Endrin               | ND     | 0.011  | 0.0054 | ug/l         |      |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.011  | 0.0056 | ug/l         |      |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.011  | 0.0055 | ug/l         |      |
| 53494-70-5 | Endrin ketone        | ND     | 0.011  | 0.0055 | ug/l         |      |
| 959-98-8   | Endosulfan-I         | ND     | 0.011  | 0.0053 | ug/l         |      |
| 33213-65-9 | Endosulfan-II        | ND     | 0.011  | 0.0046 | ug/l         |      |
| 76-44-8    | Heptachlor           | ND     | 0.011  | 0.0041 | ug/l         |      |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.011  | 0.0070 | ug/l         |      |
| 72-43-5    | Methoxychlor         | ND     | 0.022  | 0.0061 | ug/l         |      |
| 8001-35-2  | Toxaphene            | ND     | 0.27   | 0.20   | ug/l         |      |
| CAS No.    | Surrogate Recoveries | Run# 1 | Run# 2 | Limi   | ts           | -    |
| 877-09-8   | Tetrachloro-m-xylene | 63%    |        | 26-13  | 32%          | 1.   |
| 877-09-8   | Tetrachloro-m-xylene | 61%    |        | 26-13  | 32%          | 1    |
| 2051-24-3  | Decachlorobiphenyl   | 41%    |        | 10-1.  | 18%          | - /, |
| 2051-24-3  | Decachlorobiphenyl   | 42%    |        | 10-1   | l <b>8</b> % | 1    |
|            |                      |        |        |        |              |      |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Prep Date

06/17/16

06/17/16

Page 1 of 3

Client Sample ID: RA-10D Lab Sample ID:

JC22206-10

Date Sampled: 06/14/16

Matrix:

AQ - Ground Water

Date Received: 06/15/16

Method:

SW846 8270D SW846 3510C

Percent Solids:

Project:

BMSMC, Building 5 Area, PR

Q

| Run #1<br>Run #2 | <b>File ID</b><br>F158440.D<br>F158478.D | DF<br>1<br>100 | Analyzed<br>06/28/16<br>06/29/16 | By<br>BP<br>AD |   |
|------------------|------------------------------------------|----------------|----------------------------------|----------------|---|
|                  | <del>_</del>                             |                |                                  | <del></del>    | - |

Prep Batch **Analytical Batch** OP94859 EF6668 OP94859 EF6670

|        | <b>Initial Volume</b> | Final Volume |
|--------|-----------------------|--------------|
| Run #1 | 1000 ml               | 1.0 ml       |
| Run #2 | 1000 ml               | 1.0 ml       |

#### ABN TCL Special List

| CAS No.   | Compound                   | Result | RL  | MDL  | Units |
|-----------|----------------------------|--------|-----|------|-------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.0 | 0.82 | ug/l  |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.0 | 0.89 | ug/l  |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.0 | 1.3  | ug/l  |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.0 | 2.4  | ug/l  |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 10  | 1.6  | ug/l  |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.0 | 1.3  | ug/l  |
| 95-48-7   | 2-Methylphenol             | ND     | 2.0 | 0.89 | ug/l  |
|           | 3&4-Methylphenol           | ND     | 2.0 | 0.88 | ug/l  |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.0 | 0.96 | ug/l  |
| 100-02-7  | 4-Nitrophenol              | ND     | 10  | 1.2  | ug/l  |
| 87-86-5   | Pentachlorophenol          | ND     | 5.0 | 1.4  | ug/l  |
| 108-95-2  | Phenol                     | ND     | 2.0 | 0.39 | ug/l  |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.0 | 1.5  | ug/l  |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 5.0 | 1.3  | ug/l  |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.0 | 0.92 | ug/l  |
| 83-32-9   | Acenaphthene               | ND     | 1.0 | 0.19 | ug/I  |
| 208-96-8  | Acenaphthylene             | ND     | 1.0 | 0.14 | ug/l  |
| 98-86-2   | Acetophenone               | ND     | 2.0 | 0.21 | ug/l  |
| 120-12-7  | Anthracene                 | ND     | 1.0 | 0.21 | ug/l  |
| 1912-24-9 | Atrazine                   | ND     | 2.0 | 0.45 | ug/l  |
| 100-52-7  | Benzaldehyde               | ND     | 5.0 | 0.29 | ug/l  |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.0 | 0.20 | ug/l  |
| 50-32-8   | Benzo(a) pyrene            | ND     | 1.0 | 0.21 | ug/l  |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.0 | 0.34 | ug/l  |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.0 | 0.21 | ug/l  |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.0 | 0.40 | ug/l  |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.0 | 0.46 | ug/l  |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 1.0 | 0.21 | ug/I  |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.0 | 0.24 | ug/l  |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.0 | 0.34 | ug/l  |
| 86-74-8   | Carbazole                  | ND     | 1.0 | 0.23 | ug/l  |
|           |                            |        |     |      |       |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Client Sample ID: **RA-10D** Lab Sample ID:

JC22206-10

AQ - Ground Water

Date Sampled: Date Received:

Q

06/14/16 06/15/16

Method: Project:

Matrix:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Percent Solids:

#### ABN TCL Special List

| CAS No.   | Compound                      | Result | RL     | MDL   | Units |  |
|-----------|-------------------------------|--------|--------|-------|-------|--|
| 105-60-2  | Caprolactam                   | ND     | 2.0    | 0.65  | ug/l  |  |
| 218-01-9  | Chrysene                      | ND     | 1.0    | 0.18  | ug/l  |  |
| 111-91-1  | bis(2-Chloroethoxy)methane    | ND     | 2.0    | 0.28  | ug/I  |  |
| 111-44-4  | bis(2-Chloroethyl)ether       | ND     | 2.0    | 0.25  | ug/l  |  |
| 108-60-1  | bis (2-Chloroisopropyl) ether | ND     | 2.0    | 0.40  | ug/l  |  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether   | ND     | 2.0    | 0.37  | ug/l  |  |
| 121-14-2  | 2,4-Dinitrotoluene            | ND     | 1.0    | 0.55  | ug/l  |  |
| 606-20-2  | 2,6-Dinitrotoluene            | ND     | 1.0    | 0.48  | ug/l  |  |
| 91-94-1   | 3,3'-Dichlorobenzidine        | ND     | 2.0    | 0.51  | ug/l  |  |
| 123-91-1  | 1,4-Dioxane                   | 2700 a | 100    | 66    | ug/i  |  |
| 53-70-3   | Dibenzo(a,h)anthracene        | ND     | 1.0    | 0.33  | ug/l  |  |
| 132-64-9  | Dibenzofuran                  | ND     | 5.0    | 0.22  | ug/l  |  |
| 84-74-2   | Di-n-butyl phthalate          | ND     | 2.0    | 0.50  | ug/l  |  |
| 117-84-0  | Di-n-octyl phthalate          | ND     | 2.0    | 0.23  | ug/l  |  |
| 84-66-2   | Diethyl phthalate             | ND     | 2.0    | 0.26  | ug/l  |  |
| 131-11-3  | Dimethyl phthalate            | ND     | 2.0    | 0.22  | ug/I  |  |
| 117-81-7  | bis(2-Ethylhexyl)phthalate    | ND     | 2.0    | 1.7   | ug/l  |  |
| 206-44-0  | Fluoranthene                  | ND     | 1.0    | 0.17  | ug/l  |  |
| 86-73-7   | Fluorene                      | ND     | 1.0    | 0.17  | ug/l  |  |
| 118-74-1  | Hexachlorobenzene             | ND     | 1.0    | 0.33  | ug/l  |  |
| 87-68-3   | Hexachlorobutadiene           | ND     | 1.0    | 0.49  | ug/l  |  |
| 77-47-4   | Hexachlorocyclopentadiene     | ND     | 10     | 2.8   | ug/l  |  |
| 67-72-1   | Hexachloroethane              | ND     | 2.0    | 0.39  | ug/l  |  |
| 193-39-5  | Indeno(1,2,3-cd)pyrene        | ND     | 1.0    | 0.33  | ug/l  |  |
| 78-59-1   | Isophorone                    | ND     | 2.0    | 0.28  | ug/l  |  |
| 90-12-0   | 1-Methylnaphthalene           | ND     | 1.0    | 0.26  | ug/l  |  |
| 91-57-6   | 2-Methylnaphthalene           | ND     | 1.0    | 0.21  | ug/l  |  |
| 88-74-4   | 2-Nitroaniline                | ND     | 5.0    | 0.28  | ug/l  |  |
| 99-09-2   | 3-Nitroaniline                | ND     | 5.0    | 0.39  | ug/l  |  |
| 100-01-6  | 4-Nitroaniline                | ND     | 5.0    | 0.44  | ug/l  |  |
| 98-95-3   | Nitrobenzene                  | ND     | 2.0    | 0.64  | ug/J  |  |
| 621-64-7  | N-Nitroso-di-n-propylamine    | ND     | 2.0    | 0.48  | ug/l  |  |
| 86-30-6   | N-Nitrosodiphenylamine        | ND     | 5.0    | 0.22  | ug/l  |  |
| 85-01-8   | Phenanthrene                  | ND     | 1.0    | 0.18  | ug/l  |  |
| 129-00-0  | Pyrene                        | ND     | 1.0    | 0.22  | ug/l  |  |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene    | ND     | 2.0    | 0.37  | ug/l  |  |
| CAS No.   | Surrogate Recoveries          | Run#1  | Run# 2 | Limi  | ts    |  |
| 367-12-4  | 2-Fluorophenol                | 55%    | 0% b   | 14-88 | 3%    |  |
|           |                               |        |        |       |       |  |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Client Sample ID: Lab Sample ID:

RA-10D JC22206-10

Matrix: Method: AQ - Ground Water

Method: Project: SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 06/14/16 Date Received: 06/15/16

Percent Solids: n/a

#### ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 4165-62-2 | Phenol-d5            | 37%    | 0% b   | 10-110% |
| 118-79-6  | 2,4,6-Tribromophenol | 109%   | 0% ь   | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 83%    | 0% ь   | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 77%    | 0% b   | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 96%    | 0% b   | 10-126% |

(a) Result is from Run# 2

(b) Outside control limits due to dilution.



ND = Not detected

letected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

321-60-8

1718-51-0

2-Fluorobiphenyl

Terphenyl-d14

### Report of Analysis

Page 1 of 1

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: |                   | SW846    | 6-10<br>round Wate<br>8270D BY | er<br>SIM SW846<br>5 Area, PR | 3510C    | Date Sampled: 06/14/16 Date Received: 06/15/16 Percent Solids: n/a |       |                        |                                       |
|----------------------------------------------------------|-------------------|----------|--------------------------------|-------------------------------|----------|--------------------------------------------------------------------|-------|------------------------|---------------------------------------|
| Run #1<br>Run #2                                         | File ID<br>4M664  |          | DF<br>1                        | Analyzed<br>06/29/16          | By<br>LK | Prep D<br>06/17/1                                                  |       | Prep Batch<br>OP94859A | Analytical Batch<br>E4M2989           |
| Run #1<br>Run #2                                         | Initial<br>1000 m | Volume   | Final Vo                       | lune                          |          |                                                                    |       |                        | · · · · · · · · · · · · · · · · · · · |
| CAS No.                                                  | Comp              | ound     |                                | Result                        | RL       | MDL                                                                | Units | Q                      |                                       |
| 91-20-3                                                  | Napht             | halene   |                                | ND                            | 0.10     | 0.029                                                              | ug/l  |                        |                                       |
| CAS No.                                                  | Surro             | gate Rec | overies                        | Run#1                         | Run# 2   | Lim                                                                | its   |                        |                                       |
| 4165-60-0                                                | Nitrob            | enzene-d | 15                             | 91%                           |          | 24-1                                                               | 25%   |                        |                                       |

92%

100%



19-127%

10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound

### Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA-10D JC22206-10

Date Sampled: Date Received:

06/14/16 06/15/16

Matrix: Method: AQ - Ground Water SW846-8015C (DAI)

Percent Solids:

Project:

BMSMC, Building 5 Area, PR

Run #1 Run #2 File ID DF GH105539.D 1

By XPL Prep Date

Prep Batch **Analytical Batch** GGH5324

Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL  | Units | Q |
|----------|----------------------|--------|--------|------|-------|---|
| 64-17-5  | Ethanol              | ND     | 100    | 55   | ug/l  |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 100    | 36   | ug/l  |   |
| 67-63-0  | Isopropyl Alcohol    | ND     | 100    | 68   | ug/l  |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 100    | 43   | ug/l  |   |
| 71-36-3  | n-Butyl Alcohol      | ND     | 100    | 87   | ug/l  |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 100    | 66   | ug/l  |   |
| 67-56-1  | Methanol             | ND     | 200    | 71   | ug/l  |   |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Lim  | its   |   |
| 111-27-3 | Hexanol              | 102%   |        | 56-1 | 45%   |   |
| 111-27-3 | Hexanol              | 112%   |        | 56-1 | 45%   |   |

Analyzed

06/16/16



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA-10D JC22206-10

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled:

06/14/16 Date Received: 06/15/16

Percent Solids:

Run #1 Run #2 File ID 6G36629.D DF 1

Analyzed By 06/27/16 DS Prep Date 06/17/16

Prep Batch OP94861

**Analytical Batch** 

Q

G6G1047

Run #1

Initial Volume 980 ml

Final Volume 10.0 ml

Run #2

#### Pesticide TCL List

| CAS No.            | Compound             | Result | RL     | MDL    | Units |
|--------------------|----------------------|--------|--------|--------|-------|
| 309-00-2           | Aldrin               | ND     | 0.010  | 0.0062 | ug/l  |
| 319-84-6           | alpha-BHC            | ND     | 0.010  | 0.0061 | ug/l  |
| 319-85-7           | beta-BHC             | ND     | 0.010  | 0.0058 | ug/l  |
| 319-86-8           | delta-BHC            | ND     | 0.010  | 0.0047 | ug/[  |
| 58-89-9            | gamma-BHC (Lindane)  | ND     | 0.010  | 0.0028 | ug/i  |
| 5103-71-9          | alpha-Chiordane      | ND     | 0.010  | 0.0047 | ug/l  |
| 5103-74-2          | gamma-Chlordane      | ND     | 0.010  | 0.0047 | ug/l  |
| 60-57-1            | Dieldrin             | ND     | 0.010  | 0.0037 | ug/l  |
| 72-54-8            | 4,4'-DDD             | ND     | 0.010  | 0.0039 | ug/l  |
| 72-55-9            | 4,4'-DDE             | ND     | 0.010  | 0.0063 | ug/l  |
| 50-29-3            | 4,4'-DDT             | ND     | 0.010  | 0.0051 | ug/l  |
| 72-20-8            | Endrin               | ND     | 0.010  | 0.0051 | ug/l  |
| 1031-07-8          | Endosulfan sulfate   | ND     | 0.010  | 0.0054 | ug/l  |
| 7421-93-4          | Endrin aldehyde      | ND     | 0.010  | 0.0052 | ug/l  |
| 53494-70-5         | Endrin ketone        | ND     | 0.010  | 0.0052 | ug/l  |
| 959-98-8           | Endosulfan-I         | ND     | 0.010  | 0.0051 | ug/l  |
| 33213-65-9         | Endosulfan-II        | ND     | 0.010  | 0.0044 | ug/l  |
| 76-44-8            | Heptachlor           | ND     | 0.010  | 0.0039 | ug/i  |
| 1024-57-3          | Heptachlor epoxide   | ND     | 0.010  | 0.0067 | ug/l  |
| 72-43-5            | Methoxychlor         | ND     | 0.020  | 0.0058 | ug/l  |
| 8001-35-2          | Toxaphene            | ND     | 0.26   | 0.19   | ug/l  |
| CAS No.            | Surrogate Recoveries | Run# 1 | Run# 2 | Limi   | ts    |
| 877-09-8           | Tetrachloro-m-xylene | 94%    |        | 26-13  | 32%   |
| 877-09-8           | Tetrachloro-m-xylene | 89%    |        | 26-13  | 32%   |
| 2051-24-3          | Decachlorobiphenyl   | 59%    |        | 10-11  | 18%   |
| 73 43 FF 4 45 4 45 |                      |        |        |        |       |



ND = Not detected

2051-24-3

MDL = Method Detection Limit

60%

RL = Reporting Limit

Decachlorobiphenyl

E = Indicates value exceeds calibration range

J = Indicates an estimated value

10-118%

B = Indicates analyte found in associated method blank

### Report of Analysis

By

BP

06/17/16

Page 1 of 3

| Client Sample ID: | EB-061416  |
|-------------------|------------|
| Lab Sample ID:    | JC22206-11 |

Matrix: Method:

Project:

AQ - Equipment Blank

DF

1

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Analyzed

06/28/16

Date Sampled: 06/14/16 Date Received:

OP94859

Q

06/15/16 Percent Solids: n/a

Prep Date Prep Batch **Analytical Batch** 

EF6668

Run #1 Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

File ID

F158441.D

Run #2

#### ABN TCL Special List

| CASI   | No. Compound                 | Result | RL  | MDL  | Unit |
|--------|------------------------------|--------|-----|------|------|
| 95-57  | -8 2-Chlorophenol            | ND     | 5.0 | 0.82 | ug/l |
| 59-50  | -7 4-Chloro-3-methyl phenol  | ND     | 5.0 | 0.89 | ug/l |
| 120-83 |                              | ND     | 2.0 | 1.3  | ug/l |
| 105-6  | 7-9 2,4-Dimethylphenol       | ND     | 5.0 | 2.4  | ug/i |
| 51-28  | -5 2,4-Dinitrophenol         | ND     | 10  | 1.6  | ug/l |
| 534-5  | 2-1 4,6-Dinitro-o-cresol     | ND     | 5.0 | 1.3  | ug/l |
| 95-48  | -7 2-Methylphenol            | ND     | 2.0 | 0.89 | ug/l |
|        | 3&4-Methylphenol             | ND     | 2.0 | 0.88 | ug/l |
| 88-75- | -5 2-Nitrophenol             | ND     | 5.0 | 0.96 | ug/l |
| 100-0  | 2-7 4-Nitrophenol            | ND     | 10  | 1.2  | ug/l |
| 87-86  | -5 Pentachlorophenol         | ND     | 5.0 | 1.4  | ug/l |
| 108-9  | 5-2 Phenol                   | ND     | 2.0 | 0.39 | ug/l |
| 58-90- | -2 2,3,4,6-Tetrachlorophenol | ND     | 5.0 | 1.5  | ug/l |
| 95-95  | -4 2,4,5-Trichlorophenol     | ND     | 5.0 | 1.3  | ug/l |
| 88-06- | -2 2,4,6-Trichlorophenol     | ND     | 5.0 | 0.92 | ug/l |
| 83-32- | -9 Acenaphthene              | ND     | 1.0 | 0.19 | ug/l |
| 208-96 | 6-8 Acenaphthylene           | ND     | 1.0 | 0.14 | ug/l |
| 98-86- | ·2 Acetophenone              | ND     | 2.0 | 0.21 | ug/l |
| 120-12 | 2-7 Anthracene               | ND     | 1.0 | 0.21 | ug/l |
| 1912-2 | 24-9 Atrazine                | ND     | 2.0 | 0.45 | ug/l |
| 100-52 | 2-7 Benzaldehyde             | ND     | 5.0 | 0.29 | ug/l |
| 56-55- | 3 Benzo(a)anthracene         | ND     | 1.0 | 0.20 | ug/l |
| 50-32- | -8 Benzo(a) pyrene           | ND     | 1.0 | 0.21 | ug/l |
| 205-99 | ( , ,                        | ND     | 1.0 | 0.21 | ug/l |
| 191-24 |                              | ND     | 1.0 | 0.34 | ug/l |
| 207-08 |                              | ND     | 1.0 | 0.21 | ug/l |
| 101-55 | , J. J                       |        | 2.0 | 0.40 | ug/l |
| 85-68- | 2 3 1                        | ND     | 2.0 | 0.46 | ug/l |
| 92-52- | -,,,-                        | ND     | 1.0 | 0.21 | ug/l |
| 91-58- |                              | ND     | 2.0 | 0.24 | ug/l |
| 106-47 |                              | ND     | 5.0 | 0.34 | ug/l |
| 86-74- | 8 Carbazole                  | ND     | 1.0 | 0.23 | ug/l |
|        |                              |        |     |      | -    |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



### Report of Analysis

Page 2 of 3

Client Sample ID: EB-061416 Lab Sample ID:

JC22206-11

AQ - Equipment Blank SW846 8270D SW846 3510C Date Sampled: Date Received:

Q

J

06/14/16 06/15/16

Method: Project:

Matrix:

BMSMC, Building 5 Area, PR

Percent Solids:

#### ABN TCL Special List

| CAS No.   | Compound                    | Result | RL     | MDL  | Units |
|-----------|-----------------------------|--------|--------|------|-------|
| 105-60-2  | Caprolactam                 | 0.81   | 2.0    | 0.65 | ug/l  |
| 218-01-9  | Chrysene                    | ND     | 1.0    | 0.18 | ug/l  |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.0    | 0.28 | ug/l  |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 2.0    | 0.25 | ug/l  |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.0    | 0.40 | ug/l  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.0    | 0.37 | ug/l  |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.0    | 0.55 | ug/l  |
| 606-20-2  | 2.6-Dinitrotoluene          | ND     | 1.0    | 0.48 | ug/l  |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.0    | 0.51 | ug/l  |
| 53-70-3   | Dibenzo(a,h)anthracene      | ND     | 1.0    | 0.33 | ug/l  |
| 132-64-9  | Dibenzofuran                | ND     | 5.0    | 0.22 | ug/l  |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.0    | 0.50 | ug/l  |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.0    | 0.23 | ug/l  |
| 84-66-2   | Diethyl phthalate           | ND     | 2.0    | 0.26 | ug/l  |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.0    | 0.22 | ug/l  |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | 2.1    | 2.0    | 1.7  | ug/l  |
| 206-44-0  | Fluoranthene                | ND     | 1.0    | 0.17 | ug/l  |
| 86-73-7   | Fluorene                    | ND     | 1.0    | 0.17 | ug/l  |
| 118-74-1  | Hexachlorobenzene           | ND     | 1.0    | 0.33 | ug/l  |
| 87-68-3   | Hexachlorobutadiene         | ND     | 1.0    | 0.49 | ug/l  |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 10     | 2.8  | ug/l  |
| 67-72-1   | Hexachloroethane            | ND     | 2.0    | 0.39 | ug/l  |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.0    | 0.33 | ug/l  |
| 78-59-1   | Isophorone                  | ND     | 2.0    | 0.28 | ug/l  |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 1.0    | 0.26 | ug/l  |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.0    | 0.21 | ug/l  |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.0    | 0.28 | ug/l  |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.0    | 0.39 | ug/l  |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.0    | 0.44 | ug/l  |
| 98-95-3   | Nitrobenzene                | ND     | 2.0    | 0.64 | ug/l  |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.0    | 0.48 | ug/l  |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.0    | 0.22 | ug/l  |
| 85-01-8   | Phenanthrene                | ND     | 1.0    | 0.18 | ug/l  |
| 129-00-0  | Pyrene                      | ND     | 1.0    | 0.22 | ug/l  |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.0    | 0.37 | ug/l  |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | its   |
| 367-12-4  | 2-Fluorophenol              | 55%    |        | 14-8 | 8%    |
| 4165-62-2 | Phenol-d5                   | 36%    |        | 10-1 | 10%   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

### Report of Analysis

Client Sample ID: EB-061416 Lab Sample ID: JC22206-11 Matrix:

AQ - Equipment Blank

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 06/14/16 Date Received: 06/15/16

Percent Solids; n/a

ABN TCL Special List

| CAS No.   | Surrogate Recoveries | Run#1 | Run# 2 | Limits  |
|-----------|----------------------|-------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 106%  |        | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 82%   |        | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 76%   |        | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 99%   |        | 10-126% |



E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

## Report of Analysis

Page 1 of 1

| Client Sample ID: EB-061416  Lab Sample ID: JC22206-11  Matrix: AQ - Equipment B  Method: SW846 8270D BY  Project: BMSMC, Building |                                 |        | SIM SW846 | 3510C                |              | Date              |                   | 6/14/16<br>6/15/16<br>/a |                             |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------|-----------|----------------------|--------------|-------------------|-------------------|--------------------------|-----------------------------|
| Run #1<br>Run #2                                                                                                                   | Filo ID<br>4M66474              | .D     | DF<br>1   | Analyzed<br>06/29/16 | By<br>LK     | Prep D<br>06/17/1 |                   | Prep Batch<br>OP94859A   | Analytical Batch<br>E4M2989 |
| Run #1<br>Run #2                                                                                                                   | Initial Vo                      | olume  | Final Vol | ume                  |              |                   |                   | -                        |                             |
| CAS No.                                                                                                                            | Compo                           | ınd    |           | Result               | RL           | MDL               | Units             | Q                        |                             |
| 91-20-3<br>123-91-1                                                                                                                | Naphtha<br>1,4-Dio              |        |           | ND<br>ND             | 0.10<br>0.10 | 0.029<br>0.049    | ug/l =<br>ug/l    |                          |                             |
| CAS No.                                                                                                                            | Surroga                         | te Rec | overies   | Run#1                | Run# 2       | Lim               | its               |                          |                             |
| 4165-60-0<br>321-60-8<br>1718-51-0                                                                                                 | Nitrober<br>2-Fluoro<br>Terphen | biphen | -         | 86%<br>86%<br>101%   |              | 19-1              | 25%<br>27%<br>19% |                          |                             |



### Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

EB-061416

JC22206-11

AQ - Equipment Blank

Date Sampled: 06/14/16 Date Received: 06/15/16

Matrix: Method: Project:

SW846-8015C (DAI) BMSMC, Building 5 Area, PR Percent Solids: n/a

|                  | File ID    | DF | Analyzed | Ву  | Prep Date | Prep Batch | Analytical Batch |
|------------------|------------|----|----------|-----|-----------|------------|------------------|
| Run #1<br>Run #2 | GH105540.D | 1  | 06/16/16 | XPL | n/a       | n/a        | GGH5324          |

#### Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL  | Units | Q |
|----------|----------------------|--------|--------|------|-------|---|
| 64-17-5  | Ethanol              | ND     | 100    | 55   | ug/l  |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 100    | 36   | ug/l  |   |
| 67-63-0  | Isopropyl Alcohol    | ND     | 100    | 68   | ug/l  |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 100    | 43   | ug/i  |   |
| 71-36-3  | n-Butyl Alcohol      | ND     | 100    | 87   | ug/l  |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 100    | 66   | ug/l  |   |
| 67-56-1  | Methanol             | ND     | 200    | 71   | ug/l  |   |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Lim  | its   |   |
| 111-27-3 | Hexanol              | 103%   |        | 56-1 | 45%   |   |
| 111-27-3 | Hexanol              | 110%   |        | 56-1 | 45%   |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### Report of Analysis

By

DS

Page 1 of 1

Client Sample ID: Lab Sample ID:

EB-061416 JC22206-11

AQ - Equipment Blank

Date Sampled: Date Received:

06/14/16 06/15/16

Matrix: Method:

SW846 8081B SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Run #1 Run #2

DF 6G36630.D 1

Analyzed 06/27/16

Prep Date 06/17/16

Prep Batch OP94861

Q

**Analytical Batch** G6G1047

Initial Volume 920 ml

File ID

Final Volume 10.0 ml

Run #2

Run #1

#### Pesticide TCL List

| CAS No.    | Compound             | Result | RL     | MDL    | Units |
|------------|----------------------|--------|--------|--------|-------|
| 309-00-2   | Aldrin               | ND     | 0.011  | 0.0066 | ug/l  |
| 319-84-6   | alpha-BHC            | ND     | 0.011  | 0.0065 | ug/l  |
| 319-85-7   | beta-BHC             | ND     | 0.011  | 0.0062 | ug/l  |
| 319-86-8   | delta-BHC            | ND     | 0.011  | 0.0050 | ug/l  |
| 58-89-9    | gamma-BHC (Lindane)  | ND     | 0.011  | 0.0030 | ug/l  |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.011  | 0.0050 | ug/l  |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.011  | 0.0050 | ug/l  |
| 60-57-1    | Dieldrin             | ND     | 0.011  | 0.0039 | ug/I  |
| 72-54-8    | 4,4'-DDD             | ND     | 0.011  | 0.0041 | ug/l  |
| 72-55-9    | 4,4'-DDE             | ND     | 0.011  | 0.0067 | ug/l  |
| 50-29-3    | 4,4'-DDT             | ND     | 0.011  | 0.0054 | ug/l  |
| 72-20-8    | Endrin               | ND     | 0.011  | 0.0055 | ug/l  |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.011  | 0.0057 | ug/l  |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.011  | 0.0056 | ug/l  |
| 53494-70-5 | Endrin ketone        | ND     | 0.011  | 0.0055 | ug/l  |
| 959-98-8   | Endosulfan-I         | ND     | 0.011  | 0.0054 | ug/l  |
| 33213-65-9 | Endosulfan-II        | ND     | 0.011  | 0.0047 | ug/l  |
| 76-44-8    | Heptachlor           | ND     | 0.011  | 0.0041 | ug/l  |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.011  | 0.0071 | ug/i  |
| 72-43-5    | Methoxychlor         | ND     | 0.022  | 0.0062 | ug/l  |
| 8001-35-2  | Toxaphene            | ND     | 0.27   | 0.20   | ug/l  |
| CAS No.    | Surrogate Recoveries | Run#1  | Run# 2 | Limi   | ts    |
| 877-09-8   | Tetrachloro-m-xylene | 106%   |        | 26-13  | 32%   |
| 877-09-8   | Tetrachloro-m-xylene | 106%   |        | 26-13  | 32%   |
| 2051-24-3  | Decachlorobiphenyl   | 68%    |        | 10-13  | 18%   |
| 2051-24-3  | Decachlorobiphenyl   | 75%    |        | 10-1   | 18%   |
|            |                      |        |        |        |       |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method: SW846 8270D

### Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

| Sample      | File ID   | <b>DF</b> 1 1 1 | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|-----------------|----------|----|-----------|------------|------------------|
| OP94835-MS  | F158171.D |                 | 06/21/16 | BP | 06/16/16  | OP94835    | EF6659           |
| OP94835-MSD | F158172.D |                 | 06/21/16 | BP | 06/16/16  | OP94835    | EF6659           |
| JC22206-1   | F158276.D |                 | 06/23/16 | BP | 06/16/16  | OP94835    | EF6662           |
| i           |           |                 |          |    |           |            |                  |

The QC reported here applies to the following samples:

JC22206-1, JC22206-2, JC22206-3

| CAS No.   | Compound                   | JC2220<br>ug/l | 06-1<br>Q | Spike<br>ug/l | MS<br>ug/l | MS<br>% | Spike<br>ug/i | MSD<br>ug/l | MSD<br>% | RPD    | Limits<br>Rec/RPD |
|-----------|----------------------------|----------------|-----------|---------------|------------|---------|---------------|-------------|----------|--------|-------------------|
| OZIBITO.  | Compound                   | ug/1           | ٧         | ugr           | ugr        | /6      | ugr           | ugr         | 70       | MD     | ROOK! D           |
| 95-57-8   | 2-Chlorophenol             | ND             |           | 52.1          | 34.8       | 67      | 50.5          | 34.8        | 69       | 0      | 49-110/20         |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND             |           | 52.1          | 35.7       | 69      | 50.5          | 38.9        | 77       | 9      | 44-121/18         |
| 120-83-2  | 2,4-Dichlorophenol         | ND             |           | 52.1          | 37.3       | 72      | 50.5          | 38.8        | 77       | 4      | 42-120/19         |
| 105-67-9  | 2,4-Dimethylphenol         | ND             |           | 52.1          | 31.8       | 61      | 50.5          | 35.2        | 70       | 10     | 33-132/23         |
| 51-28-5   | 2,4-Dinitrophenol          | ND             |           | 104           | 82.8       | 79      | 101           | 97.2        | 96       | 16     | 21-145/26         |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND             |           | 52.1          | 37.2       | 71      | 50.5          | 43.3        | 86       | 15     | 25-134/27         |
| 95-48-7   | 2-Methylphenol             | ND             |           | 52.1          | 31.5       | 60      | 50.5          | 31.8        | 63       | 1      | 47-112/18         |
|           | 3&4-Methylphenol           | ND             |           | 52.1          | 29.6       | 57      | 50.5          | 30.1        | 60       | 2      | 44-113/19         |
| 88-75-5   | 2-Nitrophenol              | ND             |           | 52.1          | 39.4       | 76      | 50.5          | 40.3        | 80       | 2      | 45-118/20         |
| 100-02-7  | 4-Nitrophenol              | ND             |           | 52.1          | 30.6       | 59      | 50.5          | 32.8        | 65       | 7      | 23-144/28         |
| 87-86-5   | Pentachlorophenol          | ND             |           | 52.1          | 45.8       | 88      | 50.5          | 52.4        | 104      | 13     | 25-151/25         |
| 108-95-2  | Phenol                     | ND             |           | 52.1          | 19.3       | 37      | 50.5          | 18.6        | 37       | 4      | 22-100/22         |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND             |           | 52.1          | 45.3       | 87      | 50.5          | 51.2        | 101      | 12     | 44-122/21         |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND             |           | 52.1          | 39.4       | 76      | 50.5          | 43.9        | 87       | 11     | 51-124/20         |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND             |           | 52.1          | 42.6       | 82      | 50.5          | 46.9        | 93       | 10     | 53-120/21         |
| 83-32-9   | Acenaphthene               | ND             |           | 52.1          | 36.5       | 70      | 50.5          | 40.3        | 80       | 10     | 52-120/23         |
| 208-96-8  | Acenaphthylene             | ND             |           | 52.1          | 36.2       | 70      | 50.5          | 40.3        | 80       | 11     | 50-101/22         |
| 98-86-2   | Acetophenone               | ND             |           | 52.1          | 36.6       | 70      | 50.5          | 37.9        | 75       | 3      | 31-141/23         |
| 120-12-7  | Anthracene                 | ND             |           | 52.1          | 37.9       | 73      | 50.5          | 41.9        | 83       | 10     | 54-117/22         |
| 1912-24-9 | Atrazine                   | ND             |           | 52.1          | 62.3       | 120     | 50.5          | 69.5        | 138      | 11     | 42-152/23         |
| 100-52-7  | Benzaldehyde               | ND             |           | 52.1          | 40.8       | 78      | 50.5          | 40.1        | 79       | 2      | 10-164/30         |
| 56-55-3   | Benzo(a)anthracene         | ND             |           | 52.1          | 40.3       | 77      | 50.5          | 43.9        | 87       | 9      | 40-123/24         |
| 50-32-8   | Benzo(a)pyrene             | ND             |           | 52.1          | 42.6       | 82      | 50.5          | 46.4        | 92       | 9      | 41-127/25         |
| 205-99-2  | Benzo(b)fluoranthene       | ND             |           | 52.1          | 40.6       | 78      | 50.5          | 45.3        | 90       | 11     | 39-127/27         |
| 191-24-2  | Benzo(g,h,i)perylene       | ND             |           | 52.1          | 39.7       | 76      | 50.5          | 40.7        | 81       | 2      | 34-128/28         |
| 207-08-9  | Benzo(k)fluoranthene       | ND             |           | 52.1          | 40.1       | 77      | 50.5          | 43.0        | 85       | 7      | 39-122/26         |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND             |           | 52.1          | 41.9       | 80      | 50.5          | 45.0        | 89       | 7      | 51-124/23         |
| 85-68-7   | Butyl benzyl phthalate     | ND             |           | 52.1          | 43.6       | 84      | 50.5          | 47.0        | 93       | 8      | 21-146/28         |
| 92-52-4   | 1,1'-Biphenyl              | ND             |           | 52.1          | 38.9       | 75      | 50.5          | 42.9        | 85       | 10     | 27-142/23         |
| 91-58-7   | 2-Chloronaphthalene        | ND             |           | 52.1          | 35.3       | 68      | 50.5          | 39.1        | 77       | 10     | 51-109/23         |
| 106-47-8  | 4-Chloroaniline            | 7.5            |           | 52.1          | 27.6       | 39      | 50.5          | 26.8        | 38       | 3      | 10-110/55         |
| 86-74-8   | Carbazole                  | ND             |           | 52.1          | 40.1       | 77      | 50.5          | 44.7        | 89       | 11     | 52-116/22         |
| 105-60-2  | Caprolactam                | ND             |           | 52.1          | 10.9       | 21      | 50.5          | 10.5        | 21       | 4      | 10-106/34         |
| 218-01-9  | Chrysene                   | ND             |           | 52.1          | 37.1       | 71      | 50.5          | 40.2        | 80 00    | 1000e  | 41-128/24         |
| 111-91-1  | bis(2-Chloroethoxy)methane | ND             |           | 52.1          | 30.4       | 58      | 50.5          | 31.6        | 3 B      | -1-(6) |                   |
| 111-44-4  | bis(2-Chloroethyl)ether    | ND             |           | 52.1          | 32.8       | 63      | 50.5          | 33.0        | 65       | 1      | 3 123/28          |

<sup>\* =</sup> Outside of Control Limits.



### Page 2 of 3

Method: SW846 8270D

## Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

| Sample<br>OP94835-MS<br>OP94835-MSD | File ID<br>F158171.D<br>F158172.D | DF<br>1 | Analyzed<br>06/21/16<br>06/21/16 | By<br>BP<br>BP | Prep Date<br>06/16/16<br>06/16/16 | Prep Batch<br>OP94835<br>OP94835 | Analytical Batch<br>EF6659<br>EF6659 |
|-------------------------------------|-----------------------------------|---------|----------------------------------|----------------|-----------------------------------|----------------------------------|--------------------------------------|
| JC22206-1                           | F158276.D                         | 1       | 06/23/16                         | BP             | 06/16/16                          | OP94835                          | EF6662                               |

The QC reported here applies to the following samples:

JC22206-1, JC22206-2, JC22206-3

| CAS No.   | Compound                     | JC22206-<br>ug/l | 1<br>Q | Spike<br>ug/l | MS<br>ug/l | MS<br>% | Spike<br>ug/l | MSD<br>ug/l | MSD<br>% | RPD | Limits<br>Rec/RPD |
|-----------|------------------------------|------------------|--------|---------------|------------|---------|---------------|-------------|----------|-----|-------------------|
| 108-60-1  | bis (2-Chloroisopropyl)ether | ND               |        | 52.1          | 32.4       | 62      | 50.5          | 32.2        | 64       | 1   | 41-117/25         |
| 7005-72-3 | 4-Chlorophenyl phenyl ether  | ND               |        | 52.1          | 39.2       | 75      | 50.5          | 43.3        | 86       | 10  | 48-121/21         |
| 121-14-2  | 2,4-Dinitrotoluene           | ND               |        | 52.1          | 45.7       | 88      | 50.5          | 51.2        | 101      | 11  | 54-123/27         |
| 606-20-2  | 2,6-Dinitrotoluene           | ND               |        | 52.1          | 45.2       | 87      | 50.5          | 49.7        | 98       | 9   | 55-125/26         |
| 91-94-1   | 3,3'-Dichlorobenzidine       | ND               |        | 104           | 74.0       | 71      | 101           | 80.8        | 80       | 9   | 10-107/47         |
| 123-91-1  | 1,4-Dioxane                  | 13.6             |        | 52.1          | 28.6       | 29      | 50.5          | 25.4        | 23       | 12  | 10-119/31         |
| 53-70-3   | Dibenzo(a,h)anthracene       | ND               |        | 52.1          | 40.9       | 79      | 50.5          | 43.0        | 85       | 5   | 35-130/27         |
| 132-64-9  | Dibenzofuran                 | ND               |        | 52.1          | 37.0       | 71      | 50.5          | 41.3        | 82       | 11  | 53-112/22         |
| 84-74-2   | Di-n-butyl phthalate         | ND               |        | 52.1          | 43.0       | 83      | 50.5          | 47.8        | 95       | 11  | 38-129/23         |
| 117-84-0  | Di-n-octyl phthalate         | ND               |        | 52.1          | 40.2       | 77      | 50.5          | 44.0        | 87       | 9   | 35-145/26         |
| 84-66-2   | Diethyl phthalate            | ND               |        | 52.1          | 39.0       | 75      | 50.5          | 43.8        | 87       | 12  | 16-136/30         |
| 131-11-3  | Dimethyl phthalate           | ND               |        | 52.1          | 38.2       | 73      | 50.5          | 42.1        | 83       | 10  | 10-143/39         |
| 117-81-7  | bis(2-Ethylhexyl)phthalate   | ND               |        | 52.1          | 39.2       | 75      | 50.5          | 41.7        | 83       | 6   | 34-141/28         |
| 206-44-0  | Fluoranthene                 | ND               |        | 52.1          | 41.6       | 80      | 50.5          | 46.2        | 91       | 10  | 47-123/24         |
| 86-73-7   | Fluorene                     | ND               |        | 52.1          | 38.8       | 74      | 50.5          | 42.9        | 85       | 10  | 56-117/22         |
| 118-74-1  | Hexachlorobenzene            | ND               |        | 52.1          | 38.7       | 74      | 50.5          | 42.3        | 84       | 9   | 46-125/24         |
| 87-68-3   | Hexachlorobutadiene          | ND               |        | 52.1          | 33.3       | 64      | 50.5          | 33.1        | 66       | 1   | 26-121/24         |
| 77-47-4   | Hexachlorocyclopentadiene    | ND               |        | 104           | 73.1       | 70      | 101           | 78.5        | 78       | 7   | 10-133/31         |
| 67-72-1   | Hexachloroethane             | ND               |        | 52.1          | 33.5       | 64      | 50.5          | 31.8        | 63       | 5   | 35-111/26         |
| 193-39-5  | Indeno(1,2,3-cd)pyrene       | ND               |        | 52.1          | 42.7       | 82      | 50.5          | 44.5        | 88       | 4   | 32-130/30         |
| 78-59-1   | Isophorone                   | ND               |        | 52.1          | 30.3       | 58      | 50.5          | 32.4        | 64       | 7   | 47-126/23         |
| 90-12-0   | 1-Methylnaphthalene          | ND               |        | 52.1          | 36.1       | 69      | 50.5          | 38.1        | 75       | 5   | 34-124/25         |
| 91-57-6   | 2-Methylnaphthalene          | ND               |        | 52.1          | 33.4       | 64      | 50.5          | 35.0        | 69       | 5   | 34-123/24         |
| 88-74-4   | 2-Nitroaniline               | ND               |        | 52.1          | 35.2       | 68      | 50.5          | 39.3        | 78       | 11  | 46-137/23         |
| 99-09-2   | 3-Nitroaniline               | ND               |        | 52.1          | 37.2       | 71      | 50.5          | 38.9        | 77       | 4   | 10-110/50         |
| 100-01-6  | 4-Nitroaniline               | ND               |        | 52.1          | 44.2       | 85      | 50.5          | 48.8        | 97       | 10  | 38-118/25         |
| 98-95-3   | Nitrobenzene                 | ND               |        | 52.1          | 27.8       | 53      | 50.5          | 28.6        | 57       | 3   | 35-130/25         |
| 621-64-7  | N-Nitroso-di-n-propylamine   | ND               |        | 52.1          | 27.0       | 52      | 50.5          | 27.8        | 55       | 3   | 45-123/22         |
| 86-30-6   | N-Nitrosodiphenylamine       | ND               |        | 52.1          | 39.8       | 76      | 50.5          | 43.9        | 87       | 10  | 46-123/24         |
| 85-01-8   | Phenanthrene                 | ND               |        | 52.1          | 37.2       | 71      | 50.5          | 41.0        | 81       | 10  | 48-121/23         |
| 129-00-0  | Pyrene                       | ND               |        | 52.1          | 38.8       | 74      | 50.5          | 42.6        | 84       | 9   | 43-124/26         |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene   | ND               |        | 52.1          | 41.8       | 80      | 50.5          | 44.6        | 88       | 6   | 25-142/24         |





fael Infinte Méndez

<sup>\* =</sup> Outside of Control Limits.

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC22206

AMANYWP Anderson, Mulholland & Associates Account:

Project: BMSMC, Building 5 Area, PR

| Sample<br>OP94835-MS<br>OP94835-MSD | File ID<br>F158171.D<br>F158172.D<br>F158276 D | DF<br>1<br>1 | Analyzed<br>06/21/16<br>06/21/16 | By<br>BP<br>BP | Prep Date<br>06/16/16<br>06/16/16 | Prep Batch<br>OP94835<br>OP94835 | Analytical Batch<br>EF6659<br>EF6659 |
|-------------------------------------|------------------------------------------------|--------------|----------------------------------|----------------|-----------------------------------|----------------------------------|--------------------------------------|
| JC22206-1                           | F158276.D                                      | 1            | 06/23/16                         | BP             | 06/16/16                          | OP94835                          | EF6662                               |

The QC reported here applies to the following samples:

JC22206-1, JC22206-2, JC22206-3

| CAS No.   | Surrogate Recoveries | MS  | MSD  | JC22206-1 | Limits  |
|-----------|----------------------|-----|------|-----------|---------|
| 367-12-4  | 2-Fluorophenol       | 54% | 53%  | 44%       | 14-88%  |
| 4165-62-2 | Phenol-d5            | 36% | 37%  | 28%       | 10-110% |
| 118-79-6  | 2,4,6-Tribromophenol | 94% | 104% | 86%       | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 62% | 65%  | 64%       | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 74% | 83%  | 71%       | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 85% | 92%  | 74%       | 10-126% |



Method: SW846 8270D



Page 3 of 3

<sup>\* =</sup> Outside of Control Limits.

Page 1 of 3

Method: SW846 8270D

### Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

| File ID   | DF                                  | Analyzed                                  | By                                                                   | Prep Date                                                                     | Prep Batch                                                                                               | Analytical Batch                                                                                                                 |
|-----------|-------------------------------------|-------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| F158417.D | 1                                   | 06/28/16                                  | П                                                                    | 06/17/16                                                                      | OP94859                                                                                                  | EF6667                                                                                                                           |
| F158418.D | 1                                   | 06/28/16                                  | ij                                                                   | 06/17/16                                                                      | OP94859                                                                                                  | EF6667                                                                                                                           |
| F158389.D | 1                                   | 06/27/16                                  | BP                                                                   | 06/17/16                                                                      | OP94859                                                                                                  | EF6666                                                                                                                           |
| F158443.D | 50                                  | 06/28/16                                  | BP                                                                   | 06/17/16                                                                      | OP94859                                                                                                  | EF6668                                                                                                                           |
|           | F158417.D<br>F158418.D<br>F158389.D | F158417.D 1<br>F158418.D 1<br>F158389.D 1 | F158417.D 1 06/28/16<br>F158418.D 1 06/28/16<br>F158389.D 1 06/27/16 | F158417.D 1 06/28/16 JJ<br>F158418.D 1 06/28/16 JJ<br>F158389.D 1 06/27/16 BP | F158417.D 1 06/28/16 JJ 06/17/16<br>F158418.D 1 06/28/16 JJ 06/17/16<br>F158389.D 1 06/27/16 BP 06/17/16 | F158417.D 1 06/28/16 JJ 06/17/16 OP94859<br>F158418.D 1 06/28/16 JJ 06/17/16 OP94859<br>F158389.D 1 06/27/16 BP 06/17/16 OP94859 |

The QC reported here applies to the following samples:

JC22206-4, JC22206-5, JC22206-6, JC22206-7, JC22206-8, JC22206-9, JC22206-10, JC22206-11

| 70        |                            | JC22206-9 | Spike | MS   | MS  | Spike | MSD   | MSD                  |       | Limits     |
|-----------|----------------------------|-----------|-------|------|-----|-------|-------|----------------------|-------|------------|
| CAS No.   | Compound                   | ug/l Q    | ug/l  | ug/l | %   | ug/l  | ug/l  | %                    | RPD   | R∞/RPD     |
| 05.55.0   | 0.011                      |           |       |      |     |       |       |                      |       | 40 440 400 |
| 95-57-8   | 2-Chlorophenol             | ND        | 50    | 38.7 | 77  | 50    | 31.3  | 63                   | 21* a | 49-110/20  |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND        | 50    | 39.7 | 79  | 50    | 31.7  | 63                   | 22* a | 44-121/18  |
| 120-83-2  | 2,4-Dichlorophenol         | ND        | 50    | 40.4 | 81  | 50    | 33.3  | 67                   | 19    | 42-120/19  |
| 105-67-9  | 2,4-Dimethylphenol         | ND        | 50    | 37.1 | 74  | 50    | 30.6  | 61                   | 19    | 33-132/23  |
| 51-28-5   | 2,4-Dinitrophenol          | ND        | 100   | 117  | 117 | 100   | 87.0  | 87                   | 29* a | 21-145/26  |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND        | 50    | 48.2 | 96  | 50    | 36.9  | 74                   | 27    | 25-134/27  |
| 95-48-7   | 2-Methylphenol             | ND        | 50    | 35.0 | 70  | 50    | 29.4  | 59                   | 17    | 47-112/18  |
|           | 3&4-Methylphenol           | ND        | 50    | 34.2 | 68  | 50    | 28.7  | 57                   | 17    | 44-113/19  |
| 88-75-5   | 2-Nitrophenol              | ND        | 50    | 43.6 | 87  | 50    | 35.2  | 70                   | 21* 2 | 45-118/20  |
| 100-02-7  | 4-Nitrophenol              | ND        | 50    | 32.3 | 65  | 50    | 25.1  | 50                   | 25    | 23-144/28  |
| 87-86-5   | Pentachlorophenoi          | ND        | 50    | 51.4 | 103 | 50    | 37.9  | 76                   | 30* a | 25-151/25  |
| 108-95-2  | Phenol                     | ND        | 50    | 21.7 | 43  | 50    | 18.3  | 37                   | 17    | 22-100/22  |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND        | 50    | 51.7 | 103 | 50    | 39.9  | 80                   | 26* a | 44-122/21  |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND        | 50    | 46.1 | 92  | 50    | 35.4  | 71                   | 26* a | 51-124/20  |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND        | 50    | 48.6 | 97  | 50    | 38.0  | 76                   | 24* a | 53-120/21  |
| 83-32-9   | Acenaphthene               | ND        | 50    | 41.0 | 82  | 50    | 32.0  | 64                   | 25* a | 52-120/23  |
| 208-96-8  | Acenaphthylene             | ND        | 50    | 41.2 | 82  | 50    | 32.0  | 64                   | 25* a | 50-101/22  |
| 98-86-2   | Acetophenone               | ND        | 50    | 43.0 | 86  | 50    | 34.8  | 70                   | 21    | 31-141/23  |
| 120-12-7  | Anthracene                 | ND        | 50    | 42.3 | 85  | 50    | 32.3  | 65                   | 27* a | 54-117/22  |
| 1912-24-9 | Atrazine                   | ND        | 50    | 67.6 | 135 | 50    | 52.6  | 105                  | 25* a | 42-152/23  |
| 100-52-7  | Benzaldehyde               | ND        | 50    | 43.4 | 87  | 50    | 38.5  | 77                   | 12    | 10-164/30  |
| 56-55-3   | Benzo(a)anthracene         | ND        | 50    | 44.6 | 89  | 50    | 34.1  | 68                   | 27* a | 40-123/24  |
| 50-32-8   | Benzo(a)pyrene             | ND        | 50    | 45.7 | 91  | 50    | 34.7  | 69                   | 27* a | 41-127/25  |
| 205-99-2  | Benzo(b)fluoranthene       | ND        | 50    | 44.5 | 89  | 50    | 34.0  | 68                   | 27    | 39-127/27  |
| 191-24-2  | Benzo(g,h,i)perylene       | ND        | 50    | 40.2 | 80  | 50    | 30.1  | 60                   | 29* a | 34-128/28  |
| 207-08-9  | Benzo(k)fluoranthene       | ND        | 50    | 43.0 | 86  | 50    | 33.4  | 67                   | 25    | 39-122/26  |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND        | 50    | 45.9 | 92  | 50    | 35.5  | 71                   | 26* a | 51-124/23  |
| 85-68-7   | Butyl benzyl phthalate     | ND        | 50    | 50.0 | 100 | 50    | 37.8  | 76                   | 28    | 21-146/28  |
| 92-52-4   | 1,1'-Biphenyl              | ND        | 50    | 44.5 | 89  | 50    | 35.4  | 71                   | 23    | 27-142/23  |
| 91-58-7   | 2-Chloronaphthalene        | ND        | 50    | 40.7 | 81  | 50    | 32.3  | 65                   | 23    | 51-109/23  |
| 106-47-8  | 4-Chloroaniline            | ND        | 50    | 18.2 | 36  | 50    | 22.3  | 45                   | 20    | 10-110/55  |
| 86-74-8   | Carbazole                  | ND        | 50    | 45.5 | 91  | 50    | 34.8  | 70                   | 27* a | 52-116/22  |
| 105-60-2  | Caprolactam                | ND        | 50    | 14.9 | 30  | 50    | 11.3  | 23                   | 27    | 10-106/34  |
| 218-01-9  | Chrysene                   | ND        | 50    | 40.5 | 81  | 50    | 31.5  | 63                   | 25* a | 41-128/24  |
| 111-91-1  | bis(2-Chloroethoxy)methane | ND        | 50    | 37.2 | 74  | 50    | 30.6  | 61                   | 19    | 46-120/24  |
| 111-44-4  | bis(2-Chloroethyl)ether    | ND        | 50    | 40.6 | 81  | 50    | 32.7  | 1450                 | 22    | 42-123/28  |
|           |                            |           | -     |      |     | -     | 10.50 | COLUMN TO A STATE OF | -     | 12 120/10  |

<sup>\* =</sup> Outside of Control Limits.



Page 2 of 3

Method: SW846 8270D

### Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| OP94859-MS  | F158417.D | 1  | 06/28/16 | IJ | 06/17/16  | OP94859    | EF6667           |
| OP94859-MSD | F158418.D | 1  | 06/28/16 | IJ | 06/17/16  | OP94859    | EF6667           |
| JC22206-9   | F158389.D | 1  | 06/27/16 | BP | 06/17/16  | OP94859    | EF6666           |
| IC22206-9   | F158443.D | 50 | 06/28/16 | BP | 06/17/16  | OP94859    | EF6668           |

The QC reported here applies to the following samples:

JC22206-4, JC22206-5, JC22206-6, JC22206-7, JC22206-8, JC22206-9, JC22206-10, JC22206-11

| JC22206-9 Spike MS MS Spike MSD MSD                             |       | Limits    |
|-----------------------------------------------------------------|-------|-----------|
|                                                                 | RPD   | Rcc/RPD   |
| 108-60-1 bis(2-Chloroisopropyl)ether ND 50 36.6 73 50 29.2 58 2 | 22    | 41-117/25 |
|                                                                 | 23* a | 48-121/21 |
|                                                                 | 29* a | 54-123/27 |
|                                                                 | 27* a |           |
|                                                                 |       | 55-125/26 |
|                                                                 | 1     | 10-107/47 |
|                                                                 | •     | 10-119/31 |
|                                                                 | 29* a | 35-130/27 |
|                                                                 | 25* 2 | 53-112/22 |
|                                                                 | 28* a | 38-129/23 |
|                                                                 | 28* a | 35-145/26 |
|                                                                 | 27    | 16-136/30 |
|                                                                 | 26    | 10-143/39 |
|                                                                 | 27    | 34-141/28 |
|                                                                 | 26* a | 47-123/24 |
|                                                                 | 25* a | 56-117/22 |
|                                                                 | 26* a | 46-125/24 |
|                                                                 | 16    | 26-121/24 |
| 77-47-4 Hexachlorocyclopentadiene ND 100 84.0 84 100 64.1 64 2  | 27    | 10-133/31 |
| 67-72-1 Hexachloroethane ND 50 36.0 72 50 29.2 58 2             | 21    | 35-111/26 |
| 193-39-5 Indeno(1,2,3-cd)pyrene ND 50 43.1 86 50 32.1 64 2      | 29    | 32-130/30 |
| 78-59-1 Isophorone ND 50 38.3 77 50 31.4 63 2                   | 20    | 47-126/23 |
| 90-12-0 1-Methylnaphthalene ND 50 38.9 78 50 32.1 64            | 19    | 34-124/25 |
| 91-57-6 2-Methylnaphthalene ND 50 36.4 73 50 30.0 60            | 19    | 34-123/24 |
|                                                                 | 26* a | 46-137/23 |
| 99-09-2 3-Nitroaniline ND 50 28.5 57 50 30.6 61                 | 7     | 10-110/50 |
| 100-01-6 4-Nitroaniline ND 50 49.8 100 50 37.6 75               | 28* a | 38-118/25 |
|                                                                 | 21    | 35-130/25 |
|                                                                 | 22    | 45-123/22 |
|                                                                 | 26* a | 46-123/24 |
|                                                                 | 25* a | 48-121/23 |
|                                                                 | 26    | 43-124/26 |
|                                                                 | 22    | 25-142/24 |



"Itael Infante Méndez

<sup>\* =</sup> Outside of Control Limits.

Page 3 of 3

### Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

| Sample      | File ID   | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| OP94859-MS  | F158417.D | 1  | 06/28/16 | IJ | 06/17/16  | OP94859    | EF6667           |
| OP94859-MSD | F158418.D | 1  | 06/28/16 | ĴĴ | 06/17/16  | OP94859    | EF6667           |
| JC22206-9   | F158389.D | 1  | 06/27/16 | BP | 06/17/16  | OP94859    | EF6666           |
| JC22206-9   | F158443.D | 50 | 06/28/16 | BP | 06/17/16  | OP94859    | EF6668           |
|             |           |    |          |    |           |            |                  |

The QC reported here applies to the following samples:

JC22206-4, JC22206-5, JC22206-6, JC22206-7, JC22206-8, JC22206-9, JC22206-10, JC22206-11

| CAS No.   | Surrogate Recoveries | MS   | MSD | JC22206-9 | JC22206-9        | Limits  |
|-----------|----------------------|------|-----|-----------|------------------|---------|
| 367-12-4  | 2-Fluorophenol       | 60%  | 51% | 54%       | 0%* d            | 14-88%  |
| 4165-62-2 | Phenol-d5            | 42%  | 35% | 34%       | 0%* <sup>d</sup> | 10-110% |
| 118-79-6  | 2,4,6-Tribromophenol | 109% | 85% | 110%      | 0%* <sup>d</sup> | 39-149% |
| 4165-60-0 | Nitrobenzene-d5      | 80%  | 66% | 86%       | 0%* <sup>d</sup> | 32-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 88%  | 69% | 84%       | 0%* d            | 35-119% |
| 1718-51-0 | Terphenyl-d14        | 95%  | 74% | 90%       | 0%* d            | 10-126% |

- (a) Analytical precision exceeds in-house control limits.
- (b) Outside control limits due to high level in sample relative to spike amount.
- (c) Result is from Run #2.
- (d) Outside control limits due to dilution.



Method: SW846 8270D

<sup>\* =</sup> Outside of Control Limits.

Page 1 of 1

### Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

| OP94835A-MSD 4M66408.D 1 06/28/16 LK 06/16/16 OP94835A E4M2986 | Sample<br>OP94835A-MS | File ID<br>4M66407.D | DF<br>1 | Analyzed<br>06/28/16 | By<br>LK | Prep Date 06/16/16 | Prep Batch<br>OP94835A | Analytical Bate<br>E4M2986 |
|----------------------------------------------------------------|-----------------------|----------------------|---------|----------------------|----------|--------------------|------------------------|----------------------------|
| TORRORD ASSOCIATED A GRADING STE CONTRACT DASSOCIA             | OP94835A-MSD          | 4M66408.D            | 1       | 06/28/16             | LK       | 06/16/16           | OP94835A               | E4M2986                    |
| JC222U6-1                                                      | JC22206-1             | 4M66456.D            | 1       | 06/29/16             | LK       | 06/16/16           | OP94835A               | E4M2988                    |

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

JC22206-1, JC22206-2, JC22206-3

| CAS No.             | Compound                   | JC22206-<br>ug/l | l Spike<br>Q ug/l | MS<br>ug/l    | MS<br>%      | Spike<br>ug/l | MSD<br>ug/l   | MSD<br>%  | RPD     | Limits<br>Rec/RPD      |
|---------------------|----------------------------|------------------|-------------------|---------------|--------------|---------------|---------------|-----------|---------|------------------------|
| 91-20-3<br>123-91-1 | Naphthalene<br>1,4-Dioxane | ND<br>12.1       | 1.02<br>E 1.02    | 0.906<br>11.9 | 89<br>-20* a | 1.08<br>1.08  | 0.944<br>13.2 | 88<br>102 | 4<br>10 | 23-140/36<br>20-160/30 |
| CAS No.             | Surrogate Recoveries       | MS               | MSD               | JC2           | JC22206-1    |               |               |           |         |                        |
| 367-12-4            | 2-Fluorophenol             | 39%              | 40%               |               |              | 14-81%        |               |           |         |                        |
| 4165-62-2           | Phenol-d5                  | 27%              | 28%               |               |              | 11-54%        |               |           |         |                        |
| 118-79-6            | 2,4,6-Tribromophenol       | 90%              | 94%               |               |              | 35-1459       | 6             |           |         |                        |
| 4165-60-0           | Nitrobenzene-d5            | 62%              | 64%               | 57%           | á            | 24-1259       | 6             |           |         |                        |
| 321-60-8            | 2-Fluorobiphenyl           | 50%              | 50%               | 52%           | á            | 19-1279       | 6             |           |         |                        |
| 1718-51-0           | Terphenyl-d14              | 75%              | 82%               | 63%           | 6            | 10-1199       | 6             |           |         |                        |

(a) Outside control limits due to high level in sample relative to spike amount.



<sup>\* =</sup> Outside of Control Limits.

Method: SW846 8270D BY SIM

Job Number:

JC22206

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

| Sample<br>OP94859A-MS<br>OP94859A-MSD | File ID<br>4M66392.D<br>4M66393.D | DF<br>1<br>1 | Analyzed<br>06/27/16<br>06/27/16 | By<br>LK<br>LK | Prep Date<br>06/17/16<br>06/17/16 | Prep Batch<br>OP94859A<br>OP94859A | Analytical Batch<br>E4M2984<br>E4M2984<br>E4M2989 |
|---------------------------------------|-----------------------------------|--------------|----------------------------------|----------------|-----------------------------------|------------------------------------|---------------------------------------------------|
| JC22206-9                             | 4M66472.D                         | 1            | 06/29/16                         | LK             | 06/17/16                          | OP94859A                           | E4M2989                                           |

The QC reported here applies to the following samples:

JC22206-4, JC22206-5, JC22206-6, JC22206-7, JC22206-8, JC22206-9, JC22206-10, JC22206-11

| CAS No.                            | Compound                                             | JC22206-9<br>ug/l Q | Spike<br>ug/l     | MS MS<br>ug/l %                    | Spike<br>ug/l                 | MSD<br>ug/l  | MSD<br>% R                                | RPD | Limits<br>Rec/RPD      |
|------------------------------------|------------------------------------------------------|---------------------|-------------------|------------------------------------|-------------------------------|--------------|-------------------------------------------|-----|------------------------|
| 91-20-3<br>123-91-1                | Naphthalene<br>1,4-Dioxane                           | 0.846<br>448 E      | 1                 | 0.758 0* <sup>2</sup><br>475 2700* | b 1                           | 0.826<br>509 | 0* <sup>a</sup> 9<br>6100* <sup>b</sup> 7 |     | 23-140/36<br>20-160/30 |
| CAS No.                            | Surrogate Recoveries                                 | MS                  | MSD               | JC22206-9                          | Limits                        |              |                                           |     |                        |
| 4165-60-0<br>321-60-8<br>1718-51-0 | Nitrobenzene-d5<br>2-Fluorobiphenyl<br>Terphenyl-d14 | 77%<br>73%<br>93%   | 84%<br>79%<br>92% | 82%<br>88%<br>85%                  | 24-125%<br>19-127%<br>10-119% | ,<br>5       |                                           |     |                        |

- (a) Outside control limits due to matrix interference.
- (b) Outside control limits due to high level in sample relative to spike amount.



<sup>\* =</sup> Outside of Control Limits.

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

| JC22206-1MS<br>JC22206-1MSD | File ID<br>GH105527.D<br>GH105528.D<br>GH105526.D | DF<br>1<br>1<br>1 | Analyzed<br>06/16/16<br>06/16/16<br>06/16/16 | By<br>XPL<br>XPL<br>XPL | Prep Date<br>n/a<br>n/a<br>n/a | Prep Batch<br>n/a<br>n/a<br>n/a | Analytical Batch<br>GGH5324<br>GGH5324<br>GGH5324 |
|-----------------------------|---------------------------------------------------|-------------------|----------------------------------------------|-------------------------|--------------------------------|---------------------------------|---------------------------------------------------|
|-----------------------------|---------------------------------------------------|-------------------|----------------------------------------------|-------------------------|--------------------------------|---------------------------------|---------------------------------------------------|

The QC reported here applies to the following samples:

Method: SW846-8015C (DAI)

JC22206-1, JC22206-2, JC22206-3, JC22206-4, JC22206-5, JC22206-6, JC22206-7, JC22206-8, JC22206-10, JC22206-

| CAS No.                                                                   | Compound                                                                                               | JC22206-1<br>ug/l Q              | Spike<br>ug/l                                        | MS<br>ug/l                                           | MS<br>%                                      | Spike<br>ug/l                                        | MSD<br>ug/l                                          | MSD<br>%                                      | RPD                          | Limits<br>Rec/RPD                                                                       |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------|
| 64-17-5<br>78-83-1<br>67-63-0<br>71-23-8<br>71-36-3<br>78-92-2<br>67-56-1 | Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol | ND<br>ND<br>ND<br>ND<br>ND<br>ND | 5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000 | 5250<br>5780<br>5410<br>5420<br>5010<br>5810<br>4850 | 105<br>116<br>108<br>108<br>100<br>116<br>97 | 5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000 | 5830<br>6000<br>5800<br>6010<br>5240<br>5860<br>5380 | 117<br>120<br>116<br>120<br>105<br>117<br>108 | 10<br>4<br>7<br>10<br>4<br>1 | 58-145/27<br>69-131/25<br>70-133/28<br>66-137/29<br>63-131/25<br>64-136/25<br>48-148/34 |
| CAS No.                                                                   | Surrogate Recoveries                                                                                   | MS                               | MSD                                                  | JC2                                                  | 2206-1                                       | Limits                                               |                                                      |                                               |                              |                                                                                         |
| 111-27-3<br>111-27-3                                                      | Hexanol<br>Hexanol                                                                                     | 93%<br>100%                      | 99%<br>109%                                          | 81%<br>87%                                           |                                              | 56-1459<br>56-1459                                   |                                                      |                                               |                              |                                                                                         |



<sup>\* =</sup> Outside of Control Limits.

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

AMANYWP Anderson, Mulholland & Associates

Account: Project:

BMSMC, Building 5 Area, PR

The QC reported here applies to the following samples:

Method: SW846-8015C (DAI)

JC22206-9

| CAS No.                                                                   | Compound                                                                                               | JC22206-9<br>ug/l Q                    | Spike<br>ug/I                                        | MS<br>ug/l                                           | MS<br>%                                      | Spike<br>ug/l                                        | MSD<br>ug/l                                          | MSD<br>%                                     | RPD                         | Limits<br>Rec/RPD                                                                       |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|
| 64-17-5<br>78-83-1<br>67-63-0<br>71-23-8<br>71-36-3<br>78-92-2<br>67-56-1 | Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000 | 4990<br>5790<br>5190<br>5960<br>5090<br>5780<br>4150 | 100<br>116<br>104<br>119<br>102<br>116<br>83 | 5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000 | 5600<br>5830<br>5650<br>5680<br>5100<br>5830<br>4840 | 112<br>117<br>113<br>114<br>102<br>117<br>97 | 12<br>1<br>8<br>5<br>0<br>1 | 58-145/27<br>69-131/25<br>70-133/28<br>66-137/29<br>63-131/25<br>64-136/25<br>48-148/34 |
| CAS No.                                                                   | Surrogate Recoveries                                                                                   | MS                                     | MSD                                                  | JC                                                   | 22206-9                                      | Limits                                               |                                                      |                                              |                             |                                                                                         |
| 111-27-3<br>111-27-3                                                      | Hexanol<br>Hexanol                                                                                     | 101%<br>99%                            | 102%<br>97%                                          | 969<br>929                                           |                                              | 56-1459<br>56-1459                                   |                                                      |                                              |                             |                                                                                         |



<sup>\* =</sup> Outside of Control Limits.

Method: SW846 8081B

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC22206

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| OP94861-MS  | 6G36627.D | 1  | 06/27/16 | DS | 06/17/16  | OP94861    | G6G1047          |
| OP94861-MSD | 6G36628.D | 1  | 06/27/16 | DS | 06/17/16  | OP94861    | G6G1047          |
| JC22206-9   | 6G36626.D | 1  | 06/27/16 | DS | 06/17/16  | OP94861    | G6G1047          |

The QC reported here applies to the following samples:

JC22206-4, JC22206-5, JC22206-6, JC22206-7, JC22206-8, JC22206-9, JC22206-10, JC22206-11

|            |                      | JC22206-9 | Spike | MS   | MS MS   |               | MSD  | MSD    |          | Limits    |
|------------|----------------------|-----------|-------|------|---------|---------------|------|--------|----------|-----------|
| CAS No.    | Compound             | ug/l Q    | ug/l  | ug/I | %       | Spike<br>ug/l | ug/l | %      | RPD      | Rec/RPD   |
| 000 00 0   | A17.1                |           |       |      |         |               |      |        |          |           |
| 309-00-2   | Aldrin               | ND        | 0.266 | 0.25 | 94      | 0.269         | 0.21 | 78     | 17       | 37-159/40 |
| 319-84-6   | alpha-BHC            | ND        | 0.266 | 0.26 | 98      | 0.269         | 0.22 | 82     | 17       | 37-164/37 |
| 319-85-7   | beta-BHC             | ND        | 0.266 | 0.22 | 83      | 0.269         | 0.20 | 74     | 10       | 46-151/36 |
| 319-86-8   | delta-BHC            | ND        | 0.266 | 0.26 | 98      | 0.269         | 0.23 | 86     | 12       | 32-168/36 |
| 58-89-9    | gamma-BHC (Lindane)  | ND        | 0.266 | 0.27 | 102     | 0.269         | 0.23 | 86     | 16       | 44-160/37 |
| 5103-71-9  | alpha-Chlordane      | ND        | 0.266 | 0.27 | 102     | 0.269         | 0.24 | 89     | 12       | 38-160/35 |
| 5103-74-2  | gamma-Chlordane      | ND        | 0.266 | 0.24 | 90      | 0.269         | 0.22 | 82     | 9        | 39-157/37 |
| 60-57-1    | Dieldrin             | ND        | 0.266 | 0.26 | 98      | 0.269         | 0.23 | 86     | 12       | 42-161/36 |
| 72-54-8    | 4,4'-DDD             | ND        | 0.266 | 0.25 | 94      | 0.269         | 0.21 | 78     | 17       | 40-161/36 |
| 72-55-9    | 4,4'-DDE             | ND        | 0.266 | 0.27 | 102     | 0.269         | 0.23 | 86     | 16       | 34-158/36 |
| 50-29-3    | 4,4'-DDT             | ND        | 0.266 | 0.26 | 98      | 0.269         | 0.22 | 82     | 17       | 41-173/33 |
| 72-20-8    | Endrin               | ND        | 0.266 | 0.28 | 105     | 0.269         | 0.24 | 89     | 15       | 44-166/35 |
| 1031-07-8  | Endosulfan sulfate   | ND        | 0.266 | 0.30 | 113     | 0.269         | 0.26 | 97     | 14       | 46-161/36 |
| 7421-93-4  | Endrin aldehyde      | ND        | 0.266 | 0.23 | 86      | 0.269         | 0.21 | 78     | 9        | 34-149/36 |
| 53494-70-5 | Endrin ketone        | ND        | 0.266 | 0.30 | 113     | 0.269         | 0.26 | 97     | 14       | 44-157/36 |
| 959-98-8   | Endosulfan-I         | ND        | 0.266 | 0.24 | 90      | 0.269         | 0.21 | 78     | 13       | 43-154/35 |
| 33213-65-9 | Endosulfan-II        | ND        | 0.266 | 0.26 | 98      | 0.269         | 0.23 | 86     | 12       | 40-162/35 |
| 76-44-8    | Heptachlor           | ND        | 0.266 | 0.25 | 94      | 0.269         | 0.21 | 78     | 17       | 33-153/37 |
| 1024-57-3  | Heptachlor epoxide   | ND        | 0.266 | 0.26 | 98      | 0.269         | 0.23 | 86     | 12       | 45-154/37 |
| 72-43-5    | Methoxychlor         | ND        | 0.266 | 0.27 | 102     | 0.269         | 0.24 | 89     | 12       | 48-169/32 |
| 8001-35-2  | Toxaphene            | ND        |       | ND   |         |               | ND   |        | nc       | 50-150/30 |
|            |                      |           |       |      |         |               |      |        |          | 44 144,00 |
|            |                      |           |       |      |         |               |      |        |          |           |
| CAS No.    | Surrogate Recoveries | MS        | MSD   | JC2  | 22206-9 | Limits        |      |        | 2        |           |
|            | _                    |           |       |      |         |               |      |        |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 105%      | 88%   | 639  | 6       | 26-1329       | 6    |        | OCUBO    | <u> </u>  |
| 877-09-8   | Tetrachloro-m-xylene | 104%      | 86%   | 619  | 6       | 26-1329       | 6    | 06/    | كسنز     | Ass       |
| 2051-24-3  | Decachlorobiphenyl   | 88%       | 75%   | 419  | 6       | 10-1189       | %    | 1 35   |          |           |
| 2051-24-3  | Decachlorobiphenyl   | 90%       | 74%   | 429  | 6       | 10-1189       | 6    | 13 111 | ael Infa | nte 📜     |





<sup>\* =</sup> Outside of Control Limits.

|                                 |                                         | GW EB        | F                 | CHAII                    | ds Corpor      | orate \       | Ville         | ate. I  | Build     | dine R      |               |                     | X                 | Borning  |                    | Page               | el of    | 2                                                |                                                  | PA            |
|---------------------------------|-----------------------------------------|--------------|-------------------|--------------------------|----------------|---------------|---------------|---------|-----------|-------------|---------------|---------------------|-------------------|----------|--------------------|--------------------|----------|--------------------------------------------------|--------------------------------------------------|---------------|
|                                 |                                         | e y<br>Lins  | - 2               | 2235 Route<br>732-329-02 | 130. D         | Device        | an. Ni        | ar na   | 11880     | n.          |               |                     |                   | Accutaet | 10000              |                    |          | JC Z Z Z                                         | 106                                              |               |
| Glient Informatic               | onl                                     | <del></del>  |                   | cility Inton             |                |               |               |         |           | 73704       |               |                     |                   | 1 1      | rt Quota d:        | i                  |          |                                                  |                                                  |               |
| Anderson Mulholiand & A         |                                         |              |                   | derson Mu                |                |               | _             | —       |           | +           | T             | Anal                | ydeal Ink         | armation | -                  | 1                  |          | 工二                                               |                                                  |               |
| Name<br>2700 Westchester Avenue |                                         | Project New  |                   |                          | 4              | <u></u>       | _             | _       | _         | 1           |               |                     | '                 |          |                    | g                  |          |                                                  |                                                  | T             |
| Address                         | 1                                       | Location     |                   |                          |                | _             |               |         |           | _           | 7             |                     |                   |          |                    | naphthalene,<br>IM |          |                                                  |                                                  | 1 '           |
| Purchase NY                     | 10577                                   |              |                   |                          |                | _             |               |         |           |             |               |                     | ] '               |          |                    | ま                  |          |                                                  |                                                  | [ /           |
| City State Terry Taylor         | Ζφ                                      | Projectifo   |                   | Q18 Grou                 |                |               |               | -11-    |           | 1           |               | 1                   | m                 |          |                    | d nag              |          |                                                  |                                                  |               |
| Send Report to:                 |                                         |              |                   |                          |                | St o.         | <b>Bitti</b>  | No.     | <u>a</u>  | 9           | 8             |                     | 88                | 1 '      |                    | 1 50               | .        |                                                  |                                                  |               |
| Phone #: 914-251-0400           |                                         | FAX #:       |                   | 251-1206                 |                | _             |               | _       | '         | 8280C       | B270D         | B015B               | Pesticides, 80818 | 1 = 1    | 至                  | Brne<br>327        |          |                                                  |                                                  |               |
|                                 |                                         | Collection   | -                 | -                        |                |               | reser         |         |           | 1 8         | Ŋ             | 8 '                 | 8                 | 1 5      | 딥                  | S B                |          |                                                  |                                                  |               |
| Field ID / Point of Collection  |                                         | Three        | Banqiyot<br>By    | Metro                    | # of<br>bothes | ğ             | HON.          | 2 3     |           | VOC.        | SVOC,         | LWA,                | 1 8 1             | ИМАУРН   | BMAEPHR            | 1,4 Diox<br>Method |          |                                                  |                                                  | 1 1           |
| MW.IT                           | 6/10/16                                 | 1225         | NMIZ              | GW                       |                | x             | I             | T       | ×         |             | ×             | X.                  | -                 | X        | X                  | ×                  | +-       | +-                                               | +                                                | 1-00          |
| MY. 18                          | (20)16                                  | 1650         |                   | GW                       |                | X             | I             | T       | X         |             | X             | X                   | <del></del>       | X        | ×                  | 1 A                | 12       | +                                                | <del> </del>                                     | €99           |
| MW- 17 MS                       | 10/10/12                                | 1237         | 1-1-              | GW                       |                | X             | I             | I       | X         |             | X             | ×                   |                   | x        | x                  | X                  | 14       | +                                                | +                                                | UYAD          |
| MW. 17 MSD                      | 410/14                                  | <del> </del> |                   | GW                       | _              | X             | 1             | I       | X         |             | X             | X                   | $\Box$            | X        | x                  | x                  | 1)+      | +-                                               | +                                                | V399          |
| MW-7<br>5-33                    | 4/10/14                                 | 1915         |                   | GW                       | _              | X             | 1             | 1       | X         | X           | Х             | X                   |                   | X        | X                  | X                  | 13       | +                                                | +-                                               | <del>  </del> |
| 3 - 34                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1225         |                   | GW                       | $\overline{}$  | X             | 1             | 1       | X         | х           | Х             | Х                   | ×                 | х        | x                  | X                  | +        | <del> </del>                                     | <del> </del>                                     | KUD           |
| 5 - 34 b                        |                                         | 1655         | -                 | GW                       |                | X             | 1             | 1       | X         | X           | Х             | х                   | ×                 | X        | X                  | X                  | 4        | <del> </del>                                     | <del> </del> '                                   |               |
| 5 - 39                          |                                         | 1708         | <del></del>       | GW                       |                | X             | +             | $\perp$ | X         | X           | Х             | Х                   | ×                 | X        | X                  | X                  | 5        | <del>                                     </del> | <del> </del>                                     | <del>  </del> |
| 5 - 34                          |                                         | 1305         | <del></del> '     | GW                       | -              | X             | +             | 4       | X         | X           | X             | X                   | pr                | Х        | X                  | X                  | 6        |                                                  | <del>                                     </del> | $\vdash$      |
|                                 |                                         | 1526         | <del>   ,</del>   | GW                       | <del>- '</del> | X             | +             | +'      | X         | لبك         | X             | X                   | X                 | X        | X                  | X                  |          |                                                  |                                                  |               |
| Turneround Information          |                                         | 1246         | - <u> </u>        | GW                       | _              | χ             |               | 'بل     | X         | X           | ×             | X                   | X                 | X        | K                  | X                  | 7        |                                                  |                                                  |               |
| X 21 Day Standard               | Attoroved E                             |              |                   |                          | Deta D         | _             |               |         |           |             |               | <del></del>         |                   | Comment  |                    |                    |          |                                                  |                                                  |               |
| 14 Dev                          | Approved a                              |              | III NU Resi       |                          | Ĺ              | ≓°            | -Come         | mery.   | ciel "A   | 5-          |               | Federal             | Express           | # ID#_   | 801                | 2 195              | 3 59     | 160                                              |                                                  |               |
| 7 Days EMERGENCY                |                                         |              | X AUPL            |                          | L              | ٦°            | -             | 7       | 5/        | 1.0         | - 10          | Lab Trip            | Blank i           | Date 4   | 4/11/              | 16 The             | m /0/    | 24                                               |                                                  | - 1           |
| Other(Days)                     |                                         |              |                   | ==#NITIAL                |                |               |               | #       | pry e     | 1.8         | Į.            | For VOC<br>toluene, | Ca (8260)         | C) add t | to reco            | ort: Tetr          | rahvden  | Witten n                                         | -isoproj                                         | pyl           |
| RUSH TAT is for FAX data        |                                         |              | Disk De           | LABEL                    | VERIFIT        | ATI           | ON!           | Fob     | ل=        | h           |               | amylchic            | oride. F          | or SVC   | / Denze<br>)Cs (82 | /70D) ar           | nzyi cni | oride an                                         | d Tert                                           |               |
| unions provincely approved.     |                                         |              | Other (2          | Specify)                 | _              |               | _             | _       | =         | /           | 1             | naphthal            | lene              |          |                    | Perox              |          |                                                  | леспу                                            |               |
| Sample Sample                   | Cantody man                             | of he docume | ented below e     | Anch time v              | rampina r      | -             | - 25          | -       | nten, /   | including c | النبث المساود | Manager,            |                   |          | 7-7                | L, 52              | . 5-00   | ٠                                                |                                                  |               |
| Wister M Kiver                  | 1214/16                                 | //800        | The second second | CX                       |                |               |               | Paris.  | - quidate | hed By:     |               | IDa                 | The latest        | , 92     | 2.5                | Accelved B         | ·        |                                                  | _                                                |               |
| Antiqualitati by Sampler:       | Date Yark: /                            | 1            | Passived By:      | 1                        |                | _             | $\rightarrow$ | Hell.   | التكنيب   | med By;     | DEX           | 8                   | 6-15-16           | -        |                    | -                  |          | <u></u>                                          | <u> </u>                                         |               |
| S<br>Reduced by Samples         | Date Time:                              |              | 3<br>Received By: |                          |                |               |               | 4       |           | 100         |               | 200                 | 2                 |          |                    | 4<br>On line       | /4       |                                                  |                                                  |               |
| 5                               |                                         | !            | 5                 |                          |                |               | ľ             | 3       | 21,       | 322, 3      | 27.32         | 4, 325, 3           | 171.777           | 117.1    | - 40 zz            | In light           |          |                                                  |                                                  |               |
|                                 |                                         |              |                   |                          | 4.1            | $\overline{}$ |               | 7       | 5         | 3/          | -             | 7 41                | July 70-1         | 1200     | 21,200             | 3 77               | 0 3      | 20                                               | <del>ZP</del>                                    |               |

JC22206: Chain of Custody Page 1 of 4

|                                |                |              |               | LAIN       |                 |                   |         |        |           |                  | 6     |                  |              | Pi<br>Acculest.                                  |           | of 2                                      |          |                                                  |         |          |
|--------------------------------|----------------|--------------|---------------|------------|-----------------|-------------------|---------|--------|-----------|------------------|-------|------------------|--------------|--------------------------------------------------|-----------|-------------------------------------------|----------|--------------------------------------------------|---------|----------|
|                                |                |              | 22            | 35 Route   | 130, D          | syton,            | NJ      | 0881   | 0         | F                | 10 EZ | 457              | ر            |                                                  |           | J(22206                                   |          |                                                  |         |          |
| ••                             |                |              | 73:           | 2-329-02   | 00 FA           | X: 7.             | 32-32   | 9-34   | 99/3      |                  |       | 35760            |              | Acculest                                         | Chaole #: |                                           |          |                                                  |         |          |
| Client information             | 1              | l            | Facil         | ty inform  | ation           |                   |         |        | $\Box$    |                  |       | Anal             | ytical Infe  | rmation                                          |           |                                           |          |                                                  |         | =        |
| Anderson Mulholland & As       | sociates       |              |               | rson Mul   | holland         | 1                 |         |        | _         |                  |       |                  |              |                                                  |           | e e                                       |          | 1                                                |         |          |
| 2700 Westchester Avenue        |                | Project Nam  | •             |            |                 |                   |         |        |           |                  |       |                  |              | Ì                                                |           | Dioxane and naphthalene,<br>hod 8270D SIM | l        |                                                  |         | Ì        |
| Addresa                        |                | Location     |               |            |                 |                   |         |        |           |                  |       | 1                |              | 1                                                |           | 룶                                         |          | 1                                                | 1       | 1        |
| Purchase NY State              | 10577          | Project/PO # |               |            |                 |                   |         | -      | $\dashv$  |                  |       | 1                |              |                                                  |           | <u></u>                                   | 1        |                                                  | 1       | 1        |
| City State Terry Taylor        | 2·b            | Projectifo   |               | 16 Grou    | nd Wa           | ter S             | ımpi    | ing    | - [       |                  |       | 1                | 80818        |                                                  |           | E 20                                      | 1        | (                                                | 1       | 1        |
| Send Report to:                |                |              |               |            |                 |                   |         |        | $\neg$    | 8280C            | 82700 | 1 22             | 8            | } '                                              | oc        | 2 g                                       |          | [                                                |         |          |
| Phone #: 914-251-0400          |                | FAX #:       |               | 1-1286     |                 |                   |         |        | $\exists$ | 22               | 82    | LMA, 8015B       | Pesticides,  | VMAVPH                                           | BMAEPHR   | 0 io                                      | l        | 1                                                | 1       |          |
|                                |                | Collection   |               |            |                 |                   | BON     |        |           | 25               | svoc, | 🐇                | 120          | ₹                                                | AE        | 1 4 Diox<br>Method                        |          | 1                                                |         | i        |
| Field ID / Point of Collection | Dale           | Time         | Sampled<br>By | Metrix     | of of<br>bothes | 로                 | # 60 P  | 100    | š         | VOCs,            | क्रि  | 3_               | e e          | 3                                                | MB.       | ± ₹                                       |          |                                                  |         |          |
| 5.32                           | 6/13/16        | 1808         | NAR           | GW         |                 | X                 |         |        | x         | X                | Х     | Х                | X            | Х                                                | X         | X                                         | 8        |                                                  |         | 1        |
| RA - 10 5                      | 6/14/16        | 1300         | NAR           | GW         |                 | X                 |         |        | x         | Х                | Х     | х                | ×            | х                                                | х         | Х                                         | <u> </u> | <u> </u>                                         |         |          |
| RA - 10 5 MS                   | CIMIL          | 1325         | NAR           | GW         |                 | x                 | 丁       | П      | X         | х                | х     | Х                | X            | x                                                | X         | x                                         | 9        | (                                                |         |          |
| RA - 10 5 MSD                  | G/14/16        |              | NMR           | GW         |                 | X                 | Т       | П      | x         | х                | х     | х                | X            | х                                                | ж         | x                                         | 7        |                                                  |         |          |
| RA - IOD                       | 1.14/4         | 1604         |               | GW         |                 | x                 |         | П      | x         | х                | X     | x                | ×            | х                                                | х         | X                                         | 10       |                                                  |         |          |
|                                | NA PACE        | 100          | 171.713       | GW         |                 | x                 | $\top$  | ⇈      | X         | х                | х     | ×                |              | х                                                | Х         | х                                         |          |                                                  | 1       | $\top$   |
|                                |                |              |               | GW         |                 | x                 | 7       | П      | х         | х                | Х     | х                |              | х                                                | Х         | х                                         |          | I                                                |         | T        |
|                                | 1              |              |               | GW         |                 | x                 | $\top$  | П      | X         | Х                | х     | X                |              | X                                                | х         | х                                         |          |                                                  |         | T        |
|                                | 1              |              |               | GW         |                 | x                 | $\top$  | П      | x         | X                | х     | X                |              | х                                                | X         | х                                         |          |                                                  |         | $\top$   |
| EB-06416                       | 6/H/K          | 1020         | 70            | EB         | 14              | X                 | 1       | $\Box$ | ΥÌ        | X                | ×     | ×                | X            | ×                                                | X         | ×                                         | 11       |                                                  |         | T        |
| TB-061416                      | 6/19/K         |              |               | ТВ         | 2               | থি                | _       | ⇈      | 7         | <del>-</del> \$- | -     | 1                |              | <del>                                     </del> | -         | 1                                         | 17       | <del>                                     </del> | 1       | $\vdash$ |
| Turneround Information         |                | I PO T       |               | 110        | _               | Deliv             | erable  | nto    | rme       | lion             |       |                  |              | Comme                                            | nia / Ran | ngriks                                    |          |                                                  |         |          |
| X 21 Day Standard              | Approved       | But          | NJ Re         | tunnel     |                 | $\overline{\Box}$ | Com     | morti  | lel "A    | <u>-</u>         |       | <u> </u>         |              | 155.41                                           |           |                                           |          |                                                  |         |          |
|                                | Mahanan        | Dy.          | X NJ Ful      |            |                 | Η                 |         | merci  |           |                  |       |                  |              | ss ID#<br>k Date_                                |           | W TI                                      | nn 100   | SF.                                              |         |          |
| 14 Day                         |                |              |               |            |                 | 믬                 |         |        |           |                  |       |                  |              | SDC) add                                         |           |                                           |          |                                                  | p-Isopr | lvao     |
| 7 Days EMERGENCY               |                |              | FULL          | CLP        |                 | ᆜ                 | ASP C   | _      |           | 1                |       |                  |              | Trimeth                                          |           |                                           |          |                                                  |         |          |
| Other (Days)                   |                |              | Diak D        | eliversbie |                 | Ш                 | State   | Font   | ne        |                  |       |                  |              | For SV                                           | OCs (8    | 270D) a                                   | dd to ri | port: 1                                          | -methyl | ì        |
| RUSH TAT is for FAX deta       |                |              | Other (       | Specify)   |                 | _                 |         |        |           |                  |       | naphth           | ralene       |                                                  |           |                                           |          |                                                  |         |          |
| unless previously approved.    | in Curtody rts | -41          |               |            |                 |                   |         |        |           |                  |       | -th-one          |              | 1                                                |           | T                                         |          |                                                  |         |          |
| Halighwayled by Sampler:       | Towns Control  | 1            | Received By   | ·          | -               | s Cities          | alle be | Place. | nquis     | -117             |       |                  | Dale Time    | ·                                                | 925       | Received                                  | Sy:      | 1                                                |         |          |
| 14/10/11 KNV                   |                | 1800         | 1 -6          | 05         | X               |                   |         | 2      |           |                  | DB    | X                | 6-15         | -1/-                                             | دمد ر     | 2<br>Received 1                           | ب        | <u></u>                                          |         |          |
| Rulinquished by Sampler:       | Date Time:     |              | nacewed By    | -          | 1               |                   |         | A      | -1-00     | med by:          | •     |                  | 1 1000       |                                                  |           | A                                         | .,       |                                                  |         |          |
| Helioquished by Sompler:       | Date (Ima:     |              | Material Bi   | :          |                 |                   |         | 3-4    |           |                  | - P   | reserved wi      | vere applica |                                                  |           | On line:                                  |          |                                                  |         |          |
| 5                              |                |              | 5             |            |                 |                   |         | 3      | ر 21      | 322              | 323,  | 32 <u>1, 9</u> 2 | 5,324,       | 327,30                                           | , 321,    | 130                                       |          |                                                  |         |          |
| ·                              |                |              |               |            |                 |                   | 54      | 1      | 5         | 1.0 .            | 3.63  | .7 4.            | 137          | 1.9/                                             | 10        | 3 P                                       |          |                                                  |         |          |

JC22206: Chain of Custody Page 2 of 4

#### **EXECUTIVE NARRATIVE**

SDG No:

JC22206

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

15

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Fifteen (15) samples were analyzed for the ABN TCL list following method SW846-8270D; Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 –Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

None

Major:

None

Minor:

None

Critical findings: Major findings:

None None

Minor findings:

- 1. All samples extracted and analyzed within method recommended holding time except for the cases described in the Data Review Worksheet. Samples JC22206-4 and JC22206-5 were re-extracted outside holding time to confirm presence of 1,4-dioxane found in corresponding method blank. Sample preservation was acceptable. Results for 1,4-dioxane were qualified as estimated (J) in affected samples.
- 2. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in the Data Review Worhseet. Analytes not meeting the continuing calibration verification method performance criteria and validation guidance document performance criteria qualified as estimated (J) or (UJ) in affected samples.

Analytes not meeting the continuing calibration verification method performance criteria but were within the validation guidance document performance criteria were not qualified. .

No closing calibration verification included in data package. No action taken, professional judgment.

- **3.** 1,4-Dioxane found in method blank. Samples JC22206-4 and JC22206-5 were reextracted outside holding time to confirm presence of 1,4-dioxane found in corresponding method blank. Sample preservation was acceptable. Results for 1,4-dioxane were qualified as estimated (J) in affected samples.
- **4.** bis(2-ethylhexyl) phthalate found in equipment blank. No action taken. bis(2-ethylhexyl)phthalate is a common laboratory contaminant and was detected at a concentration below the action level.
- **5.** 2-Fluorophenol surrogate recovery outside control limit in sample JC22206-8 due to matrix interference, confirmed by re-extraction. None of the surrogates recovered in sample JC22206-9 due to dilution. No action taken, professional judgment.

**6.** MS/MSD % recoveries and RPD within laboratory control limits except for the cases described in this document.

MS/MSD % recovery for 1,4-dioxane in sample JC22206-9MS/MSD outside laboratory control limits. No action taken, analyte concentration high compared to amount spiked.

MS/MSD % recovery for 1,4-dioxane in sample JC22206-1MS/MSD (SIM) and in sample JC22206-9MS/MSD (SIM) outside laboratory control limits. No action taken, analyte concentration high compared to amount spiked.

Several analyes not meeting the RPD laboratory control limits but were within generally accepted and validation guidance document performance criteria. No qualification made on the basis of RPD.

**COMMENTS:** 

Results are valid and can be used for decision making purposes.

**Reviewers Name:** 

Rafael Infante

Chemist License 1888

Signature:

Date:

July 19/2016

### SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC22206-1

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016 Matrix: Groundwater

| Analyte Name               | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|----------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol             | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol   | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol         | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol         | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol          | 11     | ug/l  | 1               | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol       | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 2-Methylphenol             | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 3&4-Methylphenol           | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 2-Nitrophenol              | 5.4    | ug/l  | 1               | -        | UJ         | Yes        |
| 4-Nitrophenol              | 11     | ug/l  | 1               | -        | U          | Yes        |
| Pentachlorophenol          | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| Phenol                     | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol  | 5.4    | ug/l  | 1               | -        | UJ         | Yes        |
| 2,4,5-Trichlorophenol      | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 2,4,6-Trichlorophenol      | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthene               | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthylene             | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Acetophenone               | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| Anthracene                 | 1.1    | ug/l  | 1               | -        | IJ         | Yes        |
| Atrazine                   | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| Benzaldehyde               | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a) anthracene        | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)pyrene             | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene       | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene       | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene       | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate     | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl              | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| 2-Chloronaphthalene        | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloroaniline            | 7.5    | ug/l  | 1               | -        | -          | Yes        |
| Carbazole                  | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Caprolactam                | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| Chrysene                   | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| bis (2-Chloroethyl) ether  | 2.2    | ug/l  | 1               | -        | U          | Yes        |

| bis(2-Chloroisopropyl)ether  | 2.2       | ug/l | 1 | -      | U | Yes |
|------------------------------|-----------|------|---|--------|---|-----|
| 4-Chlorophenyl phenyl ether  | 2.2       | ug/l | 1 | ~      | U | Yes |
| 2,4-Dinitrotoluene           | 1.1       | ug/l | 1 |        | U | Yes |
| 2,6-Dinitrotoluene           | 1.1       | ug/l | 1 | -      | U | Yes |
| 3,3'-Dichlorobenzidine       | 2.2       | ug/l | 1 |        | U | Yes |
| 1,4-Dioxane                  | 13.6      | ug/l | 1 | 0.00   | - | Yes |
| Dibenzo(a,h)anthracene       | 1.1       | ug/l | 1 | 125    | U | Yes |
| Dibenzofuran                 | 5.4       | ug/l | 1 | -      | Ų | Yes |
| Di-n-butyl phthalate         | 2.2       | ug/l | 1 | -      | U | Yes |
| Di-n-octyl phthalate         | 2.2       | ug/l | 1 | -      | U | Yes |
| Diethyl phthalate            | 2.2       | ug/l | 1 |        | U | Yes |
| Dimethyl phthalate           | 2.2       | ug/l | 1 | -      | U | Yes |
| bis (2-Ethylhexyl) phthalate | 2.2       | ug/l | 1 | -      | U | Yes |
| Fluoranthene                 | 1.1       | ug/l | 1 | -      | U | Yes |
| Fluorene                     | 1.1       | ug/l | 1 | -      | U | Yes |
| Hexachlorobenzene            | 1.1       | ug/l | 1 | -      | U | Yes |
| Hexachlorobutadiene          | 1.1       | ug/l | 1 | 2.70   | Ų | Yes |
| Hexachlorocyclopentadiene    | 11        | ug/l | 1 | 1, -17 | U | Yes |
| Hexachloroethane             | 2.2       | ug/l | 1 | -      | U | Yes |
| Indeno(1,2,3-cd)pyrene       | 1.1       | ug/l | 1 | -      | U | Yes |
| Isophorone                   | 2.2       | ug/l | 1 | -      | U | Yes |
| 1-Methylnaphthalene          | 1.1       | ug/l | 1 | -      | U | Yes |
| 2-Methylnaphthalene          | 1.1       | ug/l | 1 | -      | U | Yes |
| 2-Nitroaniline               | 5.4       | ug/l | 1 | -      | U | Yes |
| 3-Nitroaniline               | 5.4       | ug/l | 1 | 7      | U | Yes |
| 4-Nitroaniline               | 5.4       | ug/l | 1 | -      | U | Yes |
| Nitrobenzene                 | 2.2       | ug/l | 1 | -      | U | Yes |
| N-Nitroso-di-n-propylamine   | 2.2       | ug/l | 1 | -      | U | Yes |
| Nitrosodiphenylamine         | 5.4       | ug/l | 1 |        | U | Yes |
| Phenanthrene                 | 1.1       | ug/l | 1 | -      | U | Yes |
| Pyrene                       | 1.1       | ug/l | 1 | -      | U | Yes |
| 1,2,4,5-Tetrachlorobenzene   | 2.2       | ug/l | 1 | -      | U | Yes |
| METHOD:                      | 8270D (SI | M)   |   |        |   |     |
| Naphthalene                  | 0.11      | ug/l | 1 | -      | U | Yes |
|                              |           |      |   |        |   |     |

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016 Matrix: Groundwater

| Analyte Name                | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-----------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol              | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol    | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol          | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol          | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol           | 11     | ug/l  | 1               | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol        | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 2-Methylphenol              | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 3&4-Methylphenol            | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 2-Nitrophenol               | 5.4    | ug/l  | 1               | -        | UJ         | Yes        |
| 4-Nitrophenol               | 11     | ug/l  | 1               | -        | U          | Yes        |
| Pentachlorophenol           | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| Phenol                      | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol   | 5.4    | ug/l  | 1               | -        | UJ         | Yes        |
| 2,4,5-Trichlorophenol       | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| 2,4,6-Trichlorophenol       | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthene                | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthylene              | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Acetophenone                | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| Anthracene                  | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Atrazine                    | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| Benzaldehyde                | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)anthracene          | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)pyrene              | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene        | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene        | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene        | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether  | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate      | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl               | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| 2-Chloronaphthalene         | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloroaniline             | 5.4    | ug/l  | 1               | -        | U          | Yes        |
| Carbazole                   | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Caprolactam                 | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| Chrysene                    | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane  | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether     | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroisopropyl)ether | 2.2    | ug/l  | 1               | -        | U          | Yes        |

| 4-Chlorophenyl phenyl ether | 2.2       | ug/l | 1 | 0.20 | U  | Yes |
|-----------------------------|-----------|------|---|------|----|-----|
| 2,4-Dinitrotoluene          | 1.1       | ug/l | 1 | -    | U  | Yes |
| 2,6-Dinitrotoluene          | 1.1       | ug/l | 1 | -    | U  | Yes |
| 3,3'-Dichlorobenzidine      | 2.2       | ug/l | 1 | _    | U  | Yes |
| Dibenzo(a,h)anthracene      | 1.1       | ug/l | 1 | -    | U  | Yes |
| Dibenzofuran                | 5.4       | ug/l | 1 | -    | U  | Yes |
| Di-n-butyl phthalate        | 2.2       | ug/l | 1 | -    | U  | Yes |
| Di-n-octyl phthalate        | 2.2       | ug/l | 1 |      | U  | Yes |
| Diethyl phthalate           | 2.2       | ug/l | 1 | -    | Ų  | Yes |
| Dimethyl phthalate          | 2.2       | ug/l | 1 |      | U  | Yes |
| bis(2-Ethylhexyl)phthalate  | 2.2       | ug/l | 1 | -    | U  | Yes |
| Fluoranthene                | 1.1       | ug/l | 1 | -    | U  | Yes |
| Fluorene                    | 0.77      | ug/l | 1 | J    | UJ | Yes |
| Hexachlorobenzene           | 1.1       | ug/l | 1 | -    | U  | Yes |
| Hexachlorobutadiene         | 1.1       | ug/l | 1 | -    | U  | Yes |
| Hexachlorocyclopentadiene   | 11        | ug/l | 1 |      | U  | Yes |
| Hexachloroethane            | 2.2       | ug/l | 1 | •    | U  | Yes |
| Indeno(1,2,3-cd)pyrene      | 1.1       | ug/l | 1 | -    | U  | Yes |
| Isophorone                  | 2.2       | ug/l | 1 | 3.5  | U  | Yes |
| 1-Methylnaphthalene         | 2.6       | ug/l | 1 | -    | -  | Yes |
| 2-Methylnaphthalene         | 1.1       | ug/l | 1 | -    | U  | Yes |
| 2-Nitroaniline              | 5.4       | ug/l | 1 |      | U  | Yes |
| 3-Nitroaniline              | 5.4       | ug/l | 1 | -    | Ų  | Yes |
| 4-Nitroaniline              | 5.4       | ug/l | 1 |      | U  | Yes |
| Nitrobenzene                | 2.2       | ug/l | 1 | -    | U  | Yes |
| N-Nitroso-di-n-propylamine  | 2.2       | ug/l | 1 | -    | U  | Yes |
| Nitrosodiphenylamine        | 5.4       | ug/l | 1 | -    | U  | Yes |
| Phenanthrene                | 1.1       | ug/l | 1 | -    | U  | Yes |
| Pyrene                      | 1.1       | ug/l | J |      | Ų  | Yes |
| 1,2,4,5-Tetrachlorobenzene  | 2.2       | ug/l | 1 | 7.   | U  | Yes |
| METHOD:                     | 8270D (SI | M)   |   |      |    |     |
| Naphthalene                 | 0.11      | ug/l | 1 | 020  | U  | Yes |
| 1,4-Dioxane                 | 0.723     |      | 1 |      | U  | Yes |
| 1,4-DIOXAIIC                | U./23     | ug/l | 1 | -    | •  | 162 |

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016 Matrix: Groundwater

| Analyte Name                   | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|--------------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol                 | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol       | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol             | 2.1    | ug/l  | 1               | _        | U          | Yes        |
| 2,4-Dimethylphenol             | 5.3    | ug/l  | 1               | -        | Ų          | Yes        |
| 2,4-Dinitrophenol              | 11     | ug/l  | 1               | _        | U          | Yes        |
| 4,6-Dinitro-o-cresol           | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| 2-Methylphenol                 | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| 3&4-Methylphenol               | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| 2-Nitrophenol                  | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| 4-Nitrophenol                  | 11     | ug/l  | 1               | -        | U          | Yes        |
| Pentachlorophenol              | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| Phenol                         | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol      | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| 2,4,5-Trichlorophenol          | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| 2,4,6-Trichlorophenol          | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthene                   | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthylene                 | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Acetophenone                   | 2.1    | ug/l  | 1               | -        | ŲJ         | Yes        |
| Anthracene                     | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Atrazine                       | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzaldehyde                   | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)anthracene             | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)pyrene                 | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene           | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene           | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene           | 1.1    | ug/l  | 1               | -        | Ų          | Yes        |
| 4-Bromophenyl phenyl ether     | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate         | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl                  | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| 2-Chloronaphthalene            | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloroaniline                | 5.3    | ug/l  | 1               | -        | U          | Yes        |
| Carbazole                      | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| Caprolactam                    | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| Chrysene                       | 1.1    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane     | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether        | 2.1    | ug/l  | 1               | -        | U          | Yes        |
| bis (2-Chlorois opropyl) ether | 2.1    | ug/l  | 1               | -        | U          | Yes        |

| 4-Chlorophenyl phenyl ether | 2.1       | ug/l | 1 | _ | U  | Yes |
|-----------------------------|-----------|------|---|---|----|-----|
| 2,4-Dinitrotoluene          | 1.1       | ug/l | 1 | - | U  | Yes |
| 2,6-Dinitrotoluene          | 1.1       | ug/l | 1 | - | U  | Yes |
| 3,3'-Dichlorobenzidine      | 2.0       | ug/l | 1 | - | U  | Yes |
| Dibenzo(a,h)anthracene      | 1.1       | ug/l | 1 | - | U  | Yes |
| Dibenzofuran                | 5.3       | ug/l | 1 | - | U  | Yes |
| Di-n-butyl phthalate        | 2.1       | ug/l | 1 | - | U  | Yes |
| Di-n-octyl phthalate        | 2.1       | ug/l | 1 | - | U  | Yes |
| Diethyl phthalate           | 2.1       | ug/l | 1 | - | U  | Yes |
| Dimethyl phthalate          | 2.1       | ug/l | 1 | - | U  | Yes |
| bis(2-Ethylhexyl)phthalate  | 2.1       | ug/l | 1 | - | U  | Yes |
| Fluoranthene                | 1.1       | ug/l | 1 |   | U  | Yes |
| Fluorene                    | 1.1       | ug/l | 1 | - | U  | Yes |
| Hexachlorobenzene           | 1.1       | ug/l | 1 | - | U  | Yes |
| Hexachlorobutadiene         | 1.1       | ug/l | 1 | - | U  | Yes |
| Hexachlorocyclopentadiene   | 11        | ug/l | 1 | - | U  | Yes |
| Hexachloroethane            | 2.1       | ug/l | 1 | - | U  | Yes |
| Indeno(1,2,3-cd)pyrene      | 1.1       | ug/l | 1 | - | U  | Yes |
| Isophorone                  | 2.0       | ug/l | 1 | - | U  | Yes |
| 1-Methylnaphthalene         | 1.1       | ug/l | 1 | - | U  | Yes |
| 2-Methylnaphthalene         | 1.1       | ug/l | 1 | - | U  | Yes |
| 2-Nitroaniline              | 5.3       | ug/l | 1 | - | U  | Yes |
| 3-Nitroaniline              | 5.3       | ug/l | 1 | - | U  | Yes |
| 4-Nitroaniline              | 5.3       | ug/l | 1 | - | U  | Yes |
| Nitrobenzene                | 2.1       | ug/l | 1 | - | U  | Yes |
| N-Nitroso-di-n-propylamine  | 2.1       | ug/l | 1 | - | ŲJ | Yes |
| Nitrosodiphenylamine        | 5.3       | ug/l | 1 |   | U  | Yes |
| Phenanthrene                | 1.1       | ug/l | 1 | - | U  | Yes |
| Pyrene                      | 1.1       | ug/l | 1 |   | U  | Yes |
| 1,2,4,5-Tetrachlorobenzene  | 2.1       | ug/l | 1 | - | U  | Yes |
|                             |           |      |   |   |    |     |
| MATTION                     | 03700 /0  | 6.4) |   |   |    |     |
| METHOD:                     | 94/UD (3) | IVI) |   |   |    |     |

METHOD: 8270D (SIM)

v ×

| Naphthalene | 0.11 | ug/l | 1 | - | U | Yes |
|-------------|------|------|---|---|---|-----|
| 1,4-Dioxane | 1.36 | ug/l | 1 |   | - | Yes |

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

| AILTHOD.                   |        |      |                 |          |   |     |
|----------------------------|--------|------|-----------------|----------|---|-----|
| Analyte Name               | Result |      | Dilution Factor | Lab Flag |   | =   |
| 2-Chlorophenol             | 5.0    | ug/l | 1               | -        | U | Yes |
| 4-Chloro-3-methyl phenol   | 5.0    | ug/l | 1               | -        | U | Yes |
| 2,4-Dichlorophenol         | 2.0    | ug/l | 1               | -        | U | Yes |
| 2,4-Dimethylphenol         | 5.0    | ug/l | 1               | -        | U | Yes |
| 2,4-Dinitrophenol          | 10     | ug/l | 1               | -        | U | Yes |
| 4,6-Dinitro-o-cresol       | 5.0    | ug/l | 1               | -        | U | Yes |
| 2-Methylphenol             | 2.0    | ug/l | 1               | -        | U | Yes |
| 3&4-Methylphenol           | 2.0    | ug/l | 1               | -        | U | Yes |
| 2-Nitrophenol              | 5.0    | ug/l | 1               | -        | U | Yes |
| 4-Nitrophenol              | 10     | ug/l | 1               | •        | U | Yes |
| Pentachlorophenol          | 5.0    | ug/l | 1               | -        | U | Yes |
| Phenol                     | 2.0    | ug/l | 1               | -        | U | Yes |
| 2,3,4,6-Tetrachlorophenol  | 5.0    | ug/l | 1               | -        | U | Yes |
| 2,4,5-Trichlorophenol      | 5.0    | ug/l | 1               | -        | U | Yes |
| 2,4,6-Trichlorophenol      | 5.0    | ug/l | 1               | -        | U | Yes |
| Acenaphthene               | 1.0    | ug/l | 1               | -        | U | Yes |
| Acenaphthylene             | 1.0    | ug/l | 1               | -        | U | Yes |
| Acetophenone               | 2.0    | ug/l | 1               | -        | U | Yes |
| Anthracene                 | 1.0    | ug/l | 1               | -        | U | Yes |
| Atrazine                   | 2.0    | ug/l | 1               | -        | U | Yes |
| Benzaldehyde               | 5.0    | ug/l | 1               | -        | U | Yes |
| Benzo(a)anthracene         | 1.0    | ug/l | 1               | •        | U | Yes |
| Benzo(a)pyrene             | 1.0    | ug/l | 1               | -        | U | Yes |
| Benzo(b)fluoranthene       | 1.0    | ug/l | 1               | -        | U | Yes |
| Benzo(g,h,i)perylene       | 1.0    | ug/l | 1               | -        | U | Yes |
| Benzo(k)fluoranthene       | 1.0    | ug/l | 1               | -        | U | Yes |
| 4-Bromophenyl phenyl ether | 2.0    | ug/l | 1               | -        | U | Yes |
| Butyl benzyl phthalate     | 2.0    | ug/l | 1               | •        | U | Yes |
| 1,1'-Biphenyl              | 1.0    | ug/l | 1               | -        | U | Yes |
| 2-Chloronaphthalene        | 2.0    | ug/l | 1               | -        | U | Yes |
| 4-Chloroaniline            | 5.0    | ug/l | 1               | -        | U | Yes |
| Carbazole                  | 1.0    | ug/l | 1               | -        | U | Yes |
| Caprolactam                | 2.0    | ug/l | 1               | -        | U | Yes |
| Chrysene                   | 1.0    | ug/l | 1               | -        | Ų | Yes |
| bis(2-Chloroethoxy)methane | 2.0    | ug/l | 1               | -        | U | Yes |
| bis(2-Chloroethyl)ether    | 2.0    | ug/l | 1               | -        | U | Yes |
|                            |        |      |                 |          |   |     |

| bis(2-Chloroisopropyl)ether | 2.0       | ua/I         | 1  |   | U  | Voc        |
|-----------------------------|-----------|--------------|----|---|----|------------|
| 4-Chlorophenyl phenyl ether | 2.0       | ug/l<br>ug/l | 1  | - | U  | Yes<br>Yes |
| 2,4-Dinitrotoluene          | 1.0       | ug/l         | 1  |   | U  | Yes        |
| 2,6-Dinitrotoluene          | 1.0       | ug/l         | 1  |   | U  | Yes        |
| 3,3'-Dichlorobenzidine      | 2.0       | ug/l         | 1  | - | U  | Yes        |
| Dibenzo(a,h)anthracene      | 1.0       | ug/l         | 1  | - | U  | Yes        |
| Dibenzofuran                | 5.0       | ug/I<br>ug/I | 1  | • | U  | Yes        |
| Di-n-butyl phthalate        | 2.0       |              | 1  | - | U  |            |
| Di-n-octyl phthalate        | 2.0       | ug/l         | 1  | • | _  | Yes        |
| Diethyl phthalate           | 2.0       | ug/l         | 1  | - | U  | Yes        |
| Dimethyl phthalate          |           | ug/l         |    |   | U  | Yes        |
| - •                         | 2.0       | ug/l         | 1  | - | U  | Yes        |
| bis(2-Ethylhexyl)phthalate  | 2.1       | ug/l         | 1  | - | -  | Yes        |
| Fluoranthene                | 1.0       | ug/l         | 1  | - | U  | Yes        |
| Fluorene                    | 1.0       | ug/l         | 1  | - | U  | Yes        |
| Hexachlorobenzene           | 1.0       | ug/l         | 1  | - | U  | Yes        |
| Hexachlorobutadiene         | 1.0       | ug/l         | 1  | - | U  | Yes        |
| Hexachlorocyclopentadiene   | 10        | ug/l         | 1  | - | U  | Yes        |
| Hexachloroethane            | 2.0       | ug/l         | 1  | - | U  | Yes        |
| Indeno(1,2,3-cd)pyrene      | 1.0       | ug/l         | 1  |   | U  | Yes        |
| Isophorone                  | 2.0       | ug/l         | 1  | - | U  | Yes        |
| 1-Methylnaphthalene         | 1.0       | ug/l         | 1  |   | U  | Yes        |
| 2-Methylnaphthalene         | 1.0       | ug/l         | 1  |   | U  | Yes        |
| 2-Nitroaniline              | 5.0       | ug/l         | 1  | - | U  | Yes        |
| 3-Nitroaniline              | 5.0       | ug/l         | 1  | - | U  | Yes        |
| 4-Nitroaniline              | 5.0       | ug/l         | 1  | - | U  | Yes        |
| Nitrobenzene                | 2.0       | ug/l         | 1  | - | U  | Yes        |
| N-Nitroso-di-n-propylamine  | 2.0       | ug/l         | 1  |   | U  | Yes        |
| Nitrosodiphenylamine        | 5.0       | ug/l         | 1  | - | U  | Yes        |
| Phenanthrene                | 1.0       | ug/l         | 1  | - | U  | Yes        |
| Pyrene                      | 1.0       | ug/l         | 1  | J | UJ | Yes        |
| 1,2,4,5-Tetrachlorobenzene  | 2.0       | ug/l         | 1  | - | U  | Yes        |
| METHOD:                     | 8270D (SI | M)           |    |   |    |            |
| Naphthalene                 | 0.10      | ug/l         | 1  |   | U  | Yes        |
| 1,4-Dioxane                 | 2.86      | ug/l         | 10 | В | j  | Yes        |
| •                           |           | O/ ·         |    |   | -  |            |

Sample location: BMSMC Building 5 Area

Sampling date: 6/8/2016 Matrix: Groundwater

| Analyte Name                | Result     | Lleite | Dilution Footos | Lab Class | Validakiaa | Danamaki |
|-----------------------------|------------|--------|-----------------|-----------|------------|----------|
| 2-Chlorophenol              | 5.0        |        | Dilution Factor | Lab Flag  |            | •        |
| 4-Chloro-3-methyl phenol    | 5.0<br>5.0 | ug/l   | 1               | -         | U          | Yes      |
| 2,4-Dichlorophenol          |            | ug/l   | 1               | -         | U          | Yes      |
| 2,4-Dimethylphenol          | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| • •                         | 5.0        | ug/l   | 1               | -         | U          | Yes      |
| 2,4-Dinitrophenol           | 10         | ug/l   | 1               | -         | U          | Yes      |
| 4,6-Dinitro-o-cresol        | 5.0        | ug/l   | 1               | -         | U          | Yes      |
| 2-Methylphenol              | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| 3&4-Methylphenol            | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| 2-Nitrophenol               | 5.0        | ug/l   | 1               | -         | U          | Yes      |
| 4-Nitrophenol               | 10         | ug/l   | 1               | -         | U          | Yes      |
| Pentachlorophenol           | 5.0        | ug/l   | 1               | -         | U          | Yes      |
| Phenol                      | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| 2,3,4,6-Tetrachlorophenol   | 5.0        | ug/l   | 1               | -         | U          | Yes      |
| 2,4,5-Trichlorophenol       | 5.0        | ug/l   | 1               | -         | U          | Yes      |
| 2,4,6-Trichlorophenol       | 5.0        | ug/l   | 1               | -         | U          | Yes      |
| Acenaphthene                | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Acenaphthylene              | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Acetophenone                | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| Anthracene                  | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Atrazine                    | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| Benzaldehyde                | 5.0        | ug/l   | 1               | -         | U          | Yes      |
| Benzo(a)anthracene          | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Benzo(a)pyrene              | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Benzo(b)fluoranthene        | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Benzo(g,h,i)perylene        | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Benzo(k)fluoranthene        | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| 4-Bromophenyl phenyl ether  | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| Butyl benzyl phthalate      | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| 1,1'-Biphenyl               | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| 2-Chloronaphthalene         | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| 4-Chloroaniline             | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Carbazole                   | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| Caprolactam                 | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| Chrysene                    | 1.0        | ug/l   | 1               | -         | U          | Yes      |
| bis(2-Chloroethoxy)methane  | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| bis(2-Chloroethyl)ether     | 2.0        | ug/l   | 1               | -         | U          | Yes      |
| bis(2-Chloroisopropyl)ether | 2.0        | ug/l   | 1               | -         | Ū          | Yes      |
| 4-Chlorophenyl phenyl ether | 2.0        | ug/l   | 1               | _         | Ū          | Yes      |
|                             |            |        | _               |           |            |          |

| 2,4-Dinitrotoluene           | 1.0       | ug/l | 1 | 0.2 | UJ | Yes |
|------------------------------|-----------|------|---|-----|----|-----|
| 2,6-Dinitrotoluene           | 1.0       | ug/l | 1 |     | U  | Yes |
| 3,3'-Dichlorobenzidine       | 2.0       | ug/l | 1 | 5   | U  | Yes |
| Dibenzo(a,h)anthracene       | 1.0       | ug/l | 1 | 21  | U  | Yes |
| Dibenzofuran                 | 5.0       | ug/l | 1 |     | U  | Yes |
| Di-n-butyl phthalate         | 2.0       | ug/l | 1 | -   | บ  | Yes |
| Di-n-octyl phthalate         | 2.0       | ug/l | 1 |     | U  | Yes |
| Diethyl phthalate            | 2.0       | ug/l | 1 | -   | U  | Yes |
| Dimethyl phthalate           | 2.0       | ug/l | 1 | -   | U  | Yes |
| bis (2-Ethylhexyl) phthalate | 18.9      | ug/l | 1 | *   | -  | Yes |
| Fluoranthene                 | 1.0       | ug/l | 1 |     | U  | Yes |
| Fluorene                     | 1.0       | ug/l | 1 | -   | U  | Yes |
| Hexachlorobenzene            | 1.0       | ug/l | 1 |     | U  | Yes |
| Hexachlorobutadiene          | 1.0       | ug/l | 1 |     | U  | Yes |
| Hexachlorocyclopentadiene    | 10        | ug/l | 1 | -   | U  | Yes |
| Hexachloroethane             | 2.0       | ug/l | 1 | (   | U  | Yes |
| Indeno(1,2,3-cd)pyrene       | 1.0       | ug/l | 1 | -   | U  | Yes |
| Isophorone                   | 2.0       | ug/l | 1 | -   | U  | Yes |
| 1-Methylnaphthalene          | 1.0       | ug/l | 1 | -   | U  | Yes |
| 2-Methylnaphthalene          | 1.0       | ug/l | 1 | - 2 | U  | Yes |
| 2-Nitroaniline               | 5.0       | ug/l | 1 | -   | U  | Yes |
| 3-Nitroaniline               | 5.0       | ug/l | 1 |     | U  | Yes |
| 4-Nitroaniline               | 5.0       | ug/l | 1 | -   | U  | Yes |
| Nitrobenzene                 | 2.0       | ug/l | 1 | -   | U  | Yes |
| N-Nitroso-di-n-propylamine   | 2.0       | ug/l | 1 | -   | U  | Yes |
| Nitrosodiphenylamine         | 5.0       | ug/l | 1 | -   | U  | Yes |
| Phenanthrene                 | 1.0       | ug/l | 1 | (2) | U  | Yes |
| Pyrene                       | 1.0       | ug/l | 1 | -   | U  | Yes |
| 1,2,4,5-Tetrachlorobenzene   | 2.0       | ug/l | 1 | -   | U  | Yes |
| METHOD                       | 02700 (61 | . 41 |   |     |    |     |
| METHOD:                      | •         | •    |   |     |    | 5.4 |
| Naphthalene                  | 0.10      | ug/l | 1 |     | U  | Yes |
| 1,4-Dioxane                  | 3.46      | ug/l | 1 | •   | J  | Yes |

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

| METHOD:                     | 8270D  |       |                        |          |            |            |
|-----------------------------|--------|-------|------------------------|----------|------------|------------|
| Analyte Name                | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
| 2-Chlorophenol              | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol    | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2,4-Dichlorophenol          | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2,4-Dimethylphenol          | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2,4-Dinitrophenol           | 10     | ug/l  | 1                      | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol        | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2-Methylphenol              | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| 3&4-Methylphenol            | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2-Nitrophenol               | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| 4-Nitrophenol               | 10     | ug/l  | 1                      | -        | U          | Yes        |
| Pentachlorophenol           | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| Phenol                      | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol   | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2,4,5-Trichlorophenol       | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2,4,6-Trichlorophenol       | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| Acenaphthene                | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| Acenaphthylene              | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| Acetophenone                | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| Anthracene                  | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| Atrazine                    | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| Benzaldehyde                | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| Benzo(a)anthracene          | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| Benzo(a)pyrene              | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| Benzo(b)fluoranthene        | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| Benzo(g,h,i)perylene        | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| Benzo(k)fluoranthene        | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether  | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| Butyl benzyl phthalate      | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| 1,1'-Biphenyl               | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| 2-Chloronaphthalene         | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| 4-Chloroaniline             | 5.0    | ug/l  | 1                      | -        | U          | Yes        |
| Carbazole                   | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| Caprolactam                 | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| Chrysene                    | 1.0    | ug/l  | 1                      | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane  | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| bis(2-Chloroethyl)ether     | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| bis(2-Chloroisopropyl)ether | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
| 4-Chlorophenyl phenyl ether | 2.0    | ug/l  | 1                      | -        | U          | Yes        |
|                             |        |       |                        |          |            |            |

| 2,4-Dinitrotoluene         | 1.0       | ug/l | 1 | -    | U | Yes |
|----------------------------|-----------|------|---|------|---|-----|
| 2,6-Dinitrotoluene         | 1.0       | ug/l | 1 |      | U | Yes |
| 3,3'-Dichlorobenzidine     | 2.0       | ug/l | 1 |      | U | Yes |
| 1,4-Dioxane                | 25.2      | ug/l | 1 |      | - | Yes |
| Dibenzo(a,h)anthracene     | 1.0       | ug/l | 1 | -    | U | Yes |
| Dibenzofuran               | 5.0       | ug/l | 1 |      | U | Yes |
| Di-n-butyl phthalate       | 2.0       | ug/l | 1 |      | U | Yes |
| Di-n-octyl phthalate       | 2.0       | ug/l | 1 |      | U | Yes |
| Diethyl phthalate          | 2.0       | ug/l | 1 | -    | U | Yes |
| Dimethyl phthalate         | 2.0       | ug/l | 1 | -    | U | Yes |
| bis(2-Ethylhexyl)phthalate | 2.0       | ug/l | 1 |      | - | Yes |
| Fluoranthene               | 1.0       | ug/l | 1 | -    | Ų | Yes |
| Fluorene                   | 1.0       | ug/l | 1 |      | U | Yes |
| Hexachlorobenzene          | 1.0       | ug/l | 1 |      | U | Yes |
| Hexachlorobutadiene        | 1.0       | ug/l | 1 |      | U | Yes |
| Hexachlorocyclopentadiene  | 10        | ug/l | 1 | -    | U | Yes |
| Hexachloroethane           | 2.0       | ug/i | 1 | -    | U | Yes |
| Indeno(1,2,3-cd)pyrene     | 1.0       | ug/l | 1 | -    | Ų | Yes |
| Isophorone                 | 2.0       | ug/l | 1 | -    | U | Yes |
| 1-Methylnaphthalene        | 1.0       | ug/l | 1 | -    | U | Yes |
| 2-Methylnaphthalene        | 1.0       | ug/l | 1 | -    | U | Yes |
| 2-Nitroaniline             | 5.0       | ug/l | 1 | -    | U | Yes |
| 3-Nitroaniline             | 5.0       | ug/l | 1 | -    | U | Yes |
| 4-Nitroaniline             | 5.0       | ug/l | 1 | -    | U | Yes |
| Nitrobenzene               | 2.0       | ug/l | 1 | 570  | U | Yes |
| N-Nitroso-di-n-propylamine | 2.0       | ug/l | 1 | -    | U | Yes |
| Nitrosodiphenylamine       | 5.0       | ug/l | 1 | -    | U | Yes |
| Phenanthrene               | 1.0       | ug/l | 1 | -    | U | Yes |
| Pyrene                     | 1.0       | ug/l | 1 | -    | U | Yes |
| 1,2,4,5-Tetrachlorobenzene | 2.0       | ug/l | 1 | 0.70 | U | Yes |
| METHOD:                    | 8270D (SI | M)   |   |      |   |     |
| Naphthalene                | 0.10      | ug/l | 1 | -    | U | Yes |

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

| Analyte Name                | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-----------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol              | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol    | 5.0    | ug/l  | 1               | -        | Ų          | Yes        |
| 2,4-Dichlorophenol          | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol          | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol           | 10     | ug/l  | 1               | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol        | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2-Methylphenol              | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 3&4-Methylphenol            | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 2-Nitrophenol               | 5.0    | ug/l  | 1               | ~        | U          | Yes        |
| 4-Nitrophenol               | 10     | ug/l  | 1               | -        | U          | Yes        |
| Pentachlorophenol           | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Phenol                      | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol   | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4,5-Trichlorophenol       | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4,6-Trichlorophenol       | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthene                | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthylene              | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Acetophenone                | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Anthracene                  | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Atrazine                    | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzaldehyde                | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)anthracene          | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)pyrene              | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene        | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene        | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene        | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether  | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate      | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl               | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| 2-Chloronaphthalene         | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloroaniline             | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Carbazole                   | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Caprolactam                 | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Chrysene                    | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane  | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether     | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroisopropyl)ether | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chlorophenyl phenyl ether | 2.0    | ug/l  | 1               | -        | U          | Yes        |

| 2,4-Dinitrotoluene         | 1.0  | ug/l | 1  | -    | Ų | Yes |  |  |  |
|----------------------------|------|------|----|------|---|-----|--|--|--|
| 2,6-Dinitrotoluene         | 1.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| 3,3'-Dichlorobenzidine     | 2.0  | ug/l | 1  | 1.7. | U | Yes |  |  |  |
| 1,4-Dioxane                | 307  | ug/l | 10 | -    | 2 | Yes |  |  |  |
| Dibenzo(a,h)anthracene     | 1.0  | ug/l | 1  |      | U | Yes |  |  |  |
| Dibenzofuran               | 5.0  | ug/l | 1  | 1.70 | U | Yes |  |  |  |
| Di-n-butyl phthalate       | 2.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Di-n-octyl phthalate       | 2.0  | ug/l | 1  | 74.  | U | Yes |  |  |  |
| Diethyl phthalate          | 2.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Dimethyl phthalate         | 2.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| bis(2-Ethylhexyl)phthalate | 2.5  | ug/l | 1  | -    | • | Yes |  |  |  |
| Fluoranthene               | 1.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Fluorene                   | 1.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Hexachlorobenzene          | 1.0  | ug/l | 1  | 5.55 | U | Yes |  |  |  |
| Hexachlorobutadiene        | 1.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Hexachlorocyclopentadiene  | 10   | ug/l | 1  | -    | U | Yes |  |  |  |
| Hexachloroethane           | 2.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Indeno(1,2,3-cd)pyrene     | 1.0  | ug/l | 1  | -    | Ų | Yes |  |  |  |
| Isophorone                 | 2.0  | ug/l | 1  | 2.5  | U | Yes |  |  |  |
| 1-Methylnaphthalene        | 1.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| 2-Methylnaphthalene        | 1.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| 2-Nitroaniline             | 5.0  | ug/l | 1  |      | U | Yes |  |  |  |
| 3-Nitroaniline             | 5.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| 4-Nitroaniline             | 5.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Nitrobenzene               | 2.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| N-Nitroso-di-n-propylamine | 2.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Nitrosodiphenylamine       | 5.0  | ug/l | 1  | 0.00 | U | Yes |  |  |  |
| Phenanthrene               | 1.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| Pyrene                     | 1.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| 1,2,4,5-Tetrachlorobenzene | 2.0  | ug/l | 1  | -    | U | Yes |  |  |  |
| METHOD: 8270D (SIM)        |      |      |    |      |   |     |  |  |  |
| Naphthalene Naphthalene    | 0.10 | ug/l | 1  | -    | U | Yes |  |  |  |
|                            |      |      |    |      |   |     |  |  |  |

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

| MIETHOD:                    |        |      |                 |          |            |            |
|-----------------------------|--------|------|-----------------|----------|------------|------------|
| Analyte Name                | Result |      | Dilution Factor | Lab Flag | Validation | Reportable |
| 2-Chlorophenol              | 5.0    | ug/l | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol    | 5.0    | ug/l | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol          | 2.0    | ug/l | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol          | 67.8   | ug/l | 1               | -        | -          | Yes        |
| 2,4-Dinitrophenol           | 10     | ug/l | 1               | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol        | 5.0    | ug/l | 1               | -        | U          | Yes        |
| 2-Methylphenol              | 1.1    | ug/l | 1               | J        | IJ         | Yes        |
| 3&4-Methylphenol            | 2.0    | ug/l | 1               | -        | U          | Yes        |
| 2-Nitrophenol               | 5.0    | ug/l | 1               | -        | U          | Yes        |
| 4-Nitrophenol               | 10     | ug/l | 1               | -        | U          | Yes        |
| Pentachlorophenol           | 5.0    | ug/l | 1               | ~        | U          | Yes        |
| Phenol                      | 2.0    | ug/l | 1               | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol   | 5.0    | ug/l | 1               | -        | U          | Yes        |
| 2,4,5-Trichlorophenol       | 5.0    | ug/l | 1               | -        | U          | Yes        |
| 2,4,6-Trichlorophenol       | 5.0    | ug/l | 1               | -        | U          | Yes        |
| Acenaphthene                | 1.0    | ug/l | 1               | -        | U          | Yes        |
| Acenaphthylene              | 1.0    | ug/l | 1               | -        | U          | Yes        |
| Acetophenone                | 33.1   | ug/l | 1               | -        | -          | Yes        |
| Anthracene                  | 1.0    | ug/i | 1               | -        | U          | Yes        |
| Atrazine                    | 2.0    | ug/l | 1               | -        | U          | Yes        |
| Benzaldehyde                | 5.0    | ug/l | 1               | -        | U          | Yes        |
| Benzo(a)anthracene          | 1.0    | ug/l | 1               | -        | U          | Yes        |
| Benzo(a)pyrene              | 1.0    | ug/l | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene        | 1.0    | ug/l | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene        | 1.0    | ug/l | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene        | 1.0    | ug/l | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether  | 2.0    | ug/l | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate      | 2.0    | ug/l | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl               | 1.0    | ug/l | 1               | -        | U          | Yes        |
| 2-Chloronaphthalene         | 2.0    | ug/l | 1               | -        | U          | Yes        |
| 4-Chloroaniline             | 5.0    | ug/l | 1               | -        | U          | Yes        |
| Carbazole                   | 1.0    | ug/l | 1               | -        | U          | Yes        |
| Caprolactam                 | 2.0    | ug/l | 1               | -        | U          | Yes        |
| Chrysene                    | 1.0    | ug/l | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane  | 2.0    | ug/l | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether     | 2.0    | ug/l | 1               | -        | U          | Yes        |
| bis(2-Chloroisopropyl)ether | 2.0    | ug/l | 1               | -        | U          | Yes        |
|                             |        |      |                 |          |            |            |

| 4-Chlorophenyl phenyl ether | 2.0       | ug/l | 1  | -    | U  | Yes |
|-----------------------------|-----------|------|----|------|----|-----|
| 2,4-Dinitrotoluene          | 1.0       | ug/l | 1  | -    | U  | Yes |
| 2,6-Dinitrotoluene          | 1.0       | ug/l | 1  | -7   | U  | Yes |
| 3,3'-Dichlorobenzidine      | 2.0       | ug/l | 1  | •    | U  | Yes |
| Dibenzo(a,h)anthracene      | 1.0       | ug/i | 1  | -    | U  | Yes |
| Dibenzofuran                | 5.0       | ug/l | 1  | -    | U  | Yes |
| Di-n-butyl phthalate        | 2.0       | ug/l | 1  | -    | U  | Yes |
| Di-n-octyl phthalate        | 2.0       | ug/l | 1  |      | U  | Yes |
| Diethyl phthalate           | 2.0       | ug/l | 1  | -    | U  | Yes |
| Dimethyl phthalate          | 2.0       | ug/l | 1  |      | U  | Yes |
| bis(2-Ethylhexyl)phthalate  | 2.5       | ug/l | 1  |      | U  | Yes |
| Fluoranthene                | 1.0       | ug/l | 1  | -    | U  | Yes |
| Fluorene                    | 1.0       | ug/l | 1  | -    | U  | Yes |
| Hexachlorobenzene           | 1.0       | ug/l | 1  | 27.3 | U  | Yes |
| Hexachlorobutadiene         | 1.0       | ug/l | 1  | 0.00 | U  | Yes |
| Hexachlorocyclopentadiene   | 10        | ug/l | 1  | 3.7  | U  | Yes |
| Hexachloroethane            | 2.0       | ug/l | 1  | -    | U  | Yes |
| Indeno(1,2,3-cd)pyrene      | 1.0       | ug/l | 1  | -    | U  | Yes |
| Isophorone                  | 2.0       | ug/l | 1  | -    | U  | Yes |
| 1-Methylnaphthalene         | 1.0       | ug/l | 1  | -    | U  | Yes |
| 2-Methylnaphthalene         | 1.0       | ug/l | 1  | -    | U  | Yes |
| 2-Nitroaniline              | 5.0       | ug/l | 1  | -    | UJ | Yes |
| 3-Nitroaniline              | 5.0       | ug/l | 1  | -    | U  | Yes |
| 4-Nitroaniline              | 5.0       | ug/l | 1  | -    | U  | Yes |
| Nitrobenzene                | 2.0       | ug/l | 1  | -    | U  | Yes |
| N-Nitroso-di-n-propylamine  | 2.0       | ug/l | 1  | -    | U  | Yes |
| Nitrosodiphenylamine        | 5.0       | ug/l | 1  | -    | U  | Yes |
| Phenanthrene                | 1.0       | ug/l | 1  | 120  | Ų  | Yes |
| Pyrene                      | 1.0       | ug/l | 1  | -    | U  | Yes |
| 1,2,4,5-Tetrachlorobenzene  | 2.0       | ug/l | 1  | -    | U  | Yes |
|                             |           | •    |    |      |    |     |
| METHOD:                     | 8270D (SI | M)   |    |      |    |     |
| Naphthalene                 | 0.372     | ug/l | 1  | -    | -  | Yes |
| 1,4-Dioxane                 | 3.18      | ug/l | 10 | -    | _  | Yes |
|                             |           |      |    |      |    |     |

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016 Matrix: Groundwater

| Analyte Name                | Result | Units | Dilution Factor | Lah Flag | Validation | Reportable |
|-----------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol              | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol    | 5.0    | ug/l  | 1               | _        | Ü          | Yes        |
| 2,4-Dichlorophenol          | 2.0    | ug/l  | 1               | _        | U          | Yes        |
| 2,4-Dimethylphenol          | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol           | 10     | ug/l  | 1               | _        | Ü          | Yes        |
| 4,6-Dinitro-o-cresol        | 5.0    | ug/l  | 1               | _        | U          | Yes        |
| 2-Methylphenol              | 2.0    | ug/l  | 1               | _        | Ü          | Yes        |
| 3&4-Methylphenol            | 2.0    | ug/l  | 1               | _        | U          | Yes        |
| 2-Nitrophenol               | 5.0    | ug/l  | 1               | _        | U          | Yes        |
| 4-Nitrophenol               | 10     | ug/l  | 1               | _        | Ü          | Yes        |
| Pentachlorophenol           | 5.0    | ug/l  | 1               | _        | Ü          | Yes        |
| Phenol                      | 2.0    | ug/l  | 1               | _        | Ü          | Yes        |
| 2,3,4,6-Tetrachlorophenol   | 5.0    | ug/l  | 1               | _        | U          | Yes        |
| 2,4,5-Trichlorophenol       | 5.0    | ug/l  | 1               | -        | Ü          | Yes        |
| 2,4,6-Trichlorophenol       | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthene                | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthylene              | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Acetophenone                | 2.0    | ug/l  | 1               | -        | Ų          | Yes        |
| Anthracene                  | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Atrazine                    | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzaldehyde                | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)anthracene          | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)pyrene              | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene        | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene        | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene        | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether  | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate      | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl               | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| 2-Chloronaphthalene         | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloroaniline             | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Carbazole                   | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Caprolactam                 | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Chrysene                    | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane  | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether     | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroisopropyl)ether | 2.0    | ug/l  | 1               | -        | U          | Yes        |

| 4-Chlorophenyl phenyl ether  | 2.0        | ug/l | 1  | -   | U | Yes |
|------------------------------|------------|------|----|-----|---|-----|
| 2,4-Dinitrotoluene           | 1.0        | ug/l | 1  | -   | U | Yes |
| 2,6-Dinitrotoluene           | 1.0        | ug/l | 1  |     | U | Yes |
| 3,3'-Dichlorobenzidine       | 2.0        | ug/l | 1  | 2.5 | U | Yes |
| 1,4-Dioxane                  | 1530       | ug/l | 50 | -   | - | Yes |
| Dibenzo(a,h)anthracene       | 1.0        | ug/l | 1  | -   | U | Yes |
| Dibenzofuran                 | 5.0        | ug/l | 1  | -   | U | Yes |
| Di-n-butyl phthalate         | 2.0        | ug/l | 1  | -   | U | Yes |
| Di-n-octyl phthalate         | 2.0        | ug/l | 1  | -   | U | Yes |
| Diethyl phthalate            | 2.0        | ug/l | 1  | -   | U | Yes |
| Dimethyl phthalate           | 2.0        | ug/l | 1  | -   | U | Yes |
| bis (2-Ethylhexyl) phthalate | 2.5        | ug/l | 1  | •   | U | Yes |
| Fluoranthene                 | 1.0        | ug/l | 1  |     | U | Yes |
| Fluorene                     | 1.0        | ug/l | 1  |     | U | Yes |
| Hexachlorobenzene            | 1.0        | ug/l | 1  | -   | U | Yes |
| Hexachlorobutadiene          | 1.0        | ug/l | 1  | -   | U | Yes |
| Hexachlorocyclopentadiene    | 10         | ug/l | 1  |     | U | Yes |
| Hexachloroethane             | 2.0        | ug/l | 1  | -   | U | Yes |
| Indeno(1,2,3-cd)pyrene       | 1.0        | ug/l | 1  | -   | U | Yes |
| lsophorone                   | 2.0        | ug/l | 1  | -   | U | Yes |
| 1-Methylnaphthalene          | 1.0        | ug/l | 1  | 12  | U | Yes |
| 2-Methylnaphthalene          | 1.0        | ug/l | 1  | 94  | U | Yes |
| 2-Nitroaniline               | 5.0        | ug/l | 1  | -   | U | Yes |
| 3-Nitroaniline               | 5.0        | ug/l | 1  | -   | U | Yes |
| 4-Nitroaniline               | 5.0        | ug/l | 1  | 12  | U | Yes |
| Nitrobenzene                 | 2.0        | ug/l | 1  | -   | U | Yes |
| N-Nitroso-di-n-propylamine   | 2.0        | ug/l | 1  | 54  | U | Yes |
| Nitrosodiphenylamine         | 5.0        | ug/l | 1  |     | U | Yes |
| Phenanthrene                 | 1.0        | ug/l | 1  | 14  | U | Yes |
| Pyrene                       | 1.0        | ug/l | 1  |     | U | Yes |
| 1,2,4,5-Tetrachlorobenzene   | 2.0        | ug/l | 1  | -   | U | Yes |
| METHOD:                      | 8270D (SII | M)   |    |     |   |     |
| Naphthalene                  | 0.846      | ug/l | 1  | -   | 2 | Yes |

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016 Matrix: Groundwater

| WILTIOD.                    |        |      |                 |          |   |     |
|-----------------------------|--------|------|-----------------|----------|---|-----|
| Analyte Name                | Result |      | Dilution Factor | Lab Flag |   | -   |
| 2-Chlorophenol              | 5.0    | ug/l | 1               | -        | U | Yes |
| 4-Chloro-3-methyl phenol    | 5.0    | ug/l | 1               | -        | U | Yes |
| 2,4-Dichlorophenol          | 2.0    | ug/l | 1               | -        | U | Yes |
| 2,4-Dimethylphenol          | 5.0    | ug/l | 1               | -        | U | Yes |
| 2,4-Dinitrophenol           | 10     | ug/l | 1               | -        | U | Yes |
| 4,6-Dinitro-o-cresol        | 5.0    | ug/l | 1               | -        | U | Yes |
| 2-Methylphenol              | 2.0    | ug/l | 1               | -        | U | Yes |
| 3&4-Methylphenol            | 2.0    | ug/l | 1               | -        | U | Yes |
| 2-Nitrophenol               | 5.0    | ug/l | 1               | -        | U | Yes |
| 4-Nitrophenol               | 10     | ug/l | 1               | -        | U | Yes |
| Pentachlorophenol           | 5.0    | ug/l | 1               | -        | U | Yes |
| Phenol                      | 2.0    | ug/l | 1               | -        | U | Yes |
| 2,3,4,6-Tetrachlorophenol   | 5.0    | ug/l | 1               | -        | U | Yes |
| 2,4,5-Trichlorophenol       | 5.0    | ug/l | 1               | -        | U | Yes |
| 2,4,6-Trichlorophenol       | 5.0    | ug/l | 1               | -        | U | Yes |
| Acenaphthene                | 1.0    | ug/l | 1               | -        | U | Yes |
| Acenaphthylene              | 1.0    | ug/l | 1               | -        | U | Yes |
| Acetophenone                | 2.0    | ug/l | 1               | -        | U | Yes |
| Anthracene                  | 1.0    | ug/l | 1               | -        | U | Yes |
| Atrazine                    | 2.0    | ug/l | 1               | -        | U | Yes |
| Benzaldehyde                | 5.0    | ug/l | 1               | -        | U | Yes |
| Benzo(a)anthracene          | 1.0    | ug/l | 1               | -        | U | Yes |
| Benzo(a)pyrene              | 1.0    | ug/l | 1               | •        | U | Yes |
| Benzo(b)fluoranthene        | 1.0    | ug/l | 1               | -        | U | Yes |
| Benzo(g,h,i)perylene        | 1.0    | ug/l | 1               | -        | U | Yes |
| Benzo(k)fluoranthene        | 1.0    | ug/l | 1               | -        | U | Yes |
| 4-Bromophenyl phenyl ether  | 2.0    | ug/l | 1               | -        | U | Yes |
| Butyl benzyl phthalate      | 2.0    | ug/l | 1               | -        | U | Yes |
| 1,1'-Biphenyl               | 1.0    | ug/l | 1               | -        | U | Yes |
| 2-Chloronaphthalene         | 2.0    | ug/l | 1               | -        | U | Yes |
| 4-Chloroaniline             | 5.0    | ug/l | 1               | -        | U | Yes |
| Carbazole                   | 1.0    | ug/l | 1               | -        | U | Yes |
| Caprolactam                 | 2.0    | ug/l | 1               | -        | Ų | Yes |
| Chrysene                    | 1.0    | ug/l | 1               | -        | U | Yes |
| bis(2-Chloroethoxy)methane  | 2.0    | ug/l | 1               | -        | U | Yes |
| bis(2-Chloroethyl)ether     | 2.0    | ug/l | 1               | -        | U | Yes |
| bis(2-Chloroisopropyl)ether | 2.0    | ug/l | 1               | -        | U | Yes |
| 4-Chlorophenyl phenyl ether | 2.0    | ug/l | 1               | -        | U | Yes |
|                             |        | -    |                 |          |   |     |

| 2,4-Dinîtrotoluene         | 1.0       | ug/l | 1   | -    | U | Yes |
|----------------------------|-----------|------|-----|------|---|-----|
| 2,6-Dinitrotoluene         | 1.0       | ug/l | 1   | -2   | U | Yes |
| 3,3'-Dichlorobenzidine     | 2.0       | ug/l | 1   |      | U | Yes |
| 1,4-Dioxane                | 2700      | ug/l | 100 |      | 5 | Yes |
| Dibenzo(a,h)anthracene     | 1.0       | ug/l | 1   | -    | U | Yes |
| Dibenzofuran               | 5.0       | ug/l | 1   |      | U | Yes |
| Di-n-butyl phthalate       | 2.0       | ug/l | 1   | -    | U | Yes |
| Di-n-octyl phthalate       | 2.0       | ug/l | 1   | -    | U | Yes |
| Diethyl phthalate          | 2.0       | ug/l | 1   | 1.   | U | Yes |
| Dimethyl phthalate         | 2.0       | ug/l | 1   | 12   | U | Yes |
| bis(2-Ethylhexyl)phthalate | 2.5       | ug/l | 1   | -    | - | Yes |
| Fluoranthene               | 1.0       | ug/l | 1   |      | U | Yes |
| Fluorene                   | 1.0       | ug/l | 1   | -    | U | Yes |
| Hexachlorobenzene          | 1.0       | ug/l | 1   | -    | U | Yes |
| Hexachlorobutadiene        | 1.0       | ug/l | 1   | -    | U | Yes |
| Hexachlorocyclopentadiene  | 10        | ug/l | 1   | -    | U | Yes |
| Hexachloroethane           | 2.0       | ug/l | 1   |      | U | Yes |
| Indeno(1,2,3-cd)pyrene     | 1.0       | ug/l | 1   |      | U | Yes |
| Isophorone                 | 2.0       | ug/l | 1   | 1.4  | U | Yes |
| 1-Methylnaphthalene        | 1.0       | ug/l | 1   | 7.0  | U | Yes |
| 2-Methylnaphthalene        | 1.0       | ug/l | 1   | -    | U | Yes |
| 2-Nitroaniline             | 5.0       | ug/l | 1   | 3-   | U | Yes |
| 3-Nitroaniline             | 5.0       | ug/l | 1   | -    | υ | Yes |
| 4-Nitroaniline             | 5.0       | ug/l | 1   | -    | U | Yes |
| Nitrobenzene               | 2.0       | ug/l | 1   |      | U | Yes |
| N-Nitroso-di-n-propylamine | 2.0       | ug/l | 1   | 0    | U | Yes |
| Nitrosodiphenylamine       | 5.0       | ug/l | 1   | 34.3 | υ | Yes |
| Phenanthrene               | 1.0       | ug/l | 1   | -    | U | Yes |
| Pyrene                     | 1.0       | ug/l | 1   |      | U | Yes |
| 1,2,4,5-Tetrachlorobenzene | 2.0       | ug/l | 1   |      | U | Yes |
| METHOD:                    | 8270D (SI | M)   |     |      |   |     |
| Naphthalene                | 0.10      | ug/l | 1   | •    | U | Yes |

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016

Matrix: AQ - Equipment Blamk

| Analyte Name                   | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|--------------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol                 | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol       | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol             | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol             | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol              | 10     | ug/l  | 1               | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol           | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2-Methylphenol                 | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 3&4-Methylphenol               | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 2-Nitrophenol                  | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Nitrophenol                  | 10     | ug/l  | 1               | -        | U          | Yes        |
| Pentachlorophenol              | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Phenol                         | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol      | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4,5-Trichlorophenol          | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| 2,4,6-Trichlorophenol          | 5.0    | ug/l  | 1               | -        | Ų          | Yes        |
| Acenaphthene                   | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Acenaphthylene                 | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Acetophenone                   | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Anthracene                     | 1.0    | ug/l  | 1               | -        | Ų          | Yes        |
| Atrazine                       | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzaldehyde                   | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)anthracene             | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(a)pyrene                 | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene           | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene           | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene           | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether     | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate         | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl                  | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| 2-Chloronaphthalene            | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloroaniline                | 5.0    | ug/l  | 1               | -        | U          | Yes        |
| Carbazole                      | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| Caprolactam                    | 0.81   | ug/l  | 1               | J        | UJ         | Yes        |
| Chrysene                       | 1.0    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane     | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether        | 2.0    | ug/l  | 1               | -        | U          | Yes        |
| bis (2-Chlorois opropyl) ether | 2.0    | ug/l  | 1               | -        | U          | Yes        |

| 4-Chlorophenyl phenyl ether | 2.0       | ug/l | 1 |      | U  | Yes |
|-----------------------------|-----------|------|---|------|----|-----|
| 2,4-Dinitrotoluene          | 1.0       | ug/l | 1 |      | U  | Yes |
| 2,6-Dinitrotoluene          | 1.0       | ug/l | 1 |      | U  | Yes |
| 3,3'-Dichlorobenzidine      | 2.0       | ug/l | 1 | 17.0 | U  | Yes |
| Dibenzo(a,h)anthracene      | 1.0       | ug/l | 1 |      | U  | Yes |
| Dibenzofuran                | 5.0       | ug/l | 1 |      | U  | Yes |
| Di-n-butyl phthalate        | 2.0       | ug/l | 1 | -    | U  | Yes |
| Di-n-octyl phthalate        | 2.0       | ug/l | 1 |      | U  | Yes |
| Diethyl phthalate           | 2.0       | ug/l | 1 |      | U  | Yes |
| Dimethyl phthalate          | 2.0       | ug/l | 1 | •    | U  | Yes |
| bis(2-Ethylhexyl)phthalate  | 2.1       | ug/l | 1 |      | -  | Yes |
| Fluoranthene                | 1.0       | ug/l | 1 | •    | U  | Yes |
| Fluorene                    | 1.0       | ug/l | 1 |      | U  | Yes |
| Hexachlorobenzene           | 1.0       | ug/l | 1 |      | U  | Yes |
| Hexachlorobutadiene         | 1.0       | ug/l | 1 |      | U  | Yes |
| Hexachlorocyclopentadiene   | 10        | ug/l | 1 | *    | U  | Yes |
| Hexachloroethane            | 2.0       | ug/l | 1 | 1.5  | U  | Yes |
| Indeno(1,2,3-cd)pyrene      | 1.0       | ug/l | 1 |      | U  | Yes |
| Isophorone                  | 2.0       | ug/l | 1 |      | U  | Yes |
| 1-Methylnaphthalene         | 1.0       | ug/l | 1 | *    | U  | Yes |
| 2-Methylnaphthalene         | 1.0       | ug/l | 1 | 4    | U  | Yes |
| 2-Nitroaniline              | 5.0       | ug/l | 1 | -    | U  | Yes |
| 3-Nitroaniline              | 5.0       | ug/l | 1 |      | U  | Yes |
| 4-Nitroaniline              | 5.0       | ug/l | 1 | -    | U  | Yes |
| Nitrobenzene                | 2.0       | ug/l | 1 | ie.  | U  | Yes |
| N-Nitroso-di-n-propylamine  | 2.0       | ug/l | 1 | -    | U  | Yes |
| Nitrosodiphenylamine        | 5.0       | ug/l | 1 |      | U  | Yes |
| Phenanthrene                | 1.0       | ug/l | 1 | -    | U  | Yes |
| Pyrene                      | 1.0       | ug/l | 1 | 12   | U  | Yes |
| 1,2,4,5-Tetrachlorobenzene  | 2.0       | ug/l | 1 |      | U  | Yes |
| AAETHOD                     | 00700 /01 |      |   |      |    |     |
| METHOD:                     | •         | •    |   |      | 30 | V-  |
| Naphthalene                 | 0.10      | ug/l | 1 | *    | U  | Yes |
| 1,4-Dioxane                 | 0.10      | ug/l | 1 | *    | U  | Yes |

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016 Matrix: Groundwater

| WETHOD.                     |        |      |                 |          |            |     |
|-----------------------------|--------|------|-----------------|----------|------------|-----|
| Analyte Name                | Result |      | Dilution Factor | Lab Flag | Validation | •   |
| 2-Chlorophenol              | 34.8   | ug/l | 1               | -        | -          | Yes |
| 4-Chloro-3-methyl phenol    | 35.7   | ug/l | 1               | -        | -          | Yes |
| 2,4-Dichlorophenol          | 37.3   | ug/l | 1               | -        | -          | Yes |
| 2,4-Dimethylphenol          | 31.8   | ug/l | 1               | -        | -          | Yes |
| 2,4-Dinitrophenol           | 82.8   | ug/l | 1               | -        | -          | Yes |
| 4,6-Dinitro-o-cresol        | 37.2   | ug/l | 1               | -        | -          | Yes |
| 2-Methylphenol              | 31.5   | ug/l | 1               | -        | -          | Yes |
| 3&4-Methylphenol            | 29.6   | ug/l | 1               | -        | -          | Yes |
| 2-Nitrophenol               | 39.4   | ug/l | 1               | -        | -          | Yes |
| 4-Nitrophenol               | 30.6   | ug/l | 1               | -        | -          | Yes |
| Pentachlorophenol           | 45.8   | ug/l | 1               | -        | -          | Yes |
| Phenol                      | 19.3   | ug/l | 1               | -        | -          | Yes |
| 2,3,4,6-Tetrachlorophenol   | 45.3   | ug/l | 1               | -        | -          | Yes |
| 2,4,5-Trichlorophenol       | 39.4   | ug/l | 1               | -        | -          | Yes |
| 2,4,6-Trichlorophenol       | 42.6   | ug/l | 1               | -        | -          | Yes |
| Acenaphthene                | 36.5   | ug/l | 1               | -        | -          | Yes |
| Acenaphthylene              | 36.2   | ug/l | 1               | -        | -          | Yes |
| Acetophenone                | 36.6   | ug/l | 1               | -        | -          | Yes |
| Anthracene                  | 37.9   | ug/l | 1               | -        | •          | Yes |
| Atrazine                    | 62.3   | ug/l | 1               | -        | -          | Yes |
| Benzaldehyde                | 40.8   | ug/l | 1               | -        | -          | Yes |
| Benzo(a)anthracene          | 40.3   | ug/l | 1               | -        | -          | Yes |
| Benzo(a)pyrene              | 42.6   | ug/l | 1               | -        | -          | Yes |
| Benzo(b)fluoranthene        | 40.6   | ug/l | 1               | -        | -          | Yes |
| Benzo(g,h,i)perylene        | 39.7   | ug/l | 1               | -        | -          | Yes |
| Benzo(k)fluoranthene        | 40.1   | ug/l | 1               | -        | -          | Yes |
| 4-Bromophenyl phenyl ether  | 41.9   | ug/l | 1               | -        | -          | Yes |
| Butyl benzyl phthalate      | 43.6   | ug/l | 1               | -        | -          | Yes |
| 1,1'-Biphenyl               | 38.9   | ug/l | 1               | -        | -          | Yes |
| 2-Chloronaphthalene         | 35.3   | ug/l | 1               | -        | -          | Yes |
| 4-Chloroaniline             | 27.6   | ug/l | 1               | -        | -          | Yes |
| Carbazole                   | 40.1   | ug/l | 1               | -        | -          | Yes |
| Caprolactam                 | 10.9   | ug/l | 1               | -        | -          | Yes |
| Chrysene                    | 37.1   | ug/l | 1               | -        | -          | Yes |
| bis(2-Chloroethoxy)methane  | 30.4   | ug/l | 1               | -        | -          | Yes |
| bis(2-Chloroethyl)ether     | 32.8   | ug/l | 1               | -        | -          | Yes |
| bis(2-Chloroisopropyl)ether | 32.4   | ug/l | 1               | -        | -          | Yes |
| 4-Chlorophenyl phenyl ether | 39.2   | ug/l | 1               | -        | **         | Yes |
|                             |        | -    |                 |          |            |     |

| 2,4-Dinitrotoluene         | 45.7      | ug/l | 1 |      | -   | Yes |
|----------------------------|-----------|------|---|------|-----|-----|
| 2,6-Dinitrotoluene         | 45.2      | ug/l | 1 |      | -   | Yes |
| 3,3'-Dichlorobenzidine     | 74.0      | ug/l | 1 | -    |     | Yes |
| 1,4-Dioxane                | 28.6      | ug/l | 1 | 3.50 | -   | Yes |
| Dibenzo(a,h)anthracene     | 40.9      | ug/l | 1 | -    | -   | Yes |
| Dibenzofuran               | 37.0      | ug/l | 1 |      | *   | Yes |
| Di-n-butyl phthalate       | 43.0      | ug/l | 1 |      | .7. | Yes |
| Di-n-octyl phthalate       | 40.2      | ug/l | 1 |      | -   | Yes |
| Diethyl phthalate          | 39.0      | ug/l | 1 |      | *   | Yes |
| Dimethyl phthalate         | 38.2      | ug/l | 1 | -    | -   | Yes |
| bis(2-Ethylhexyl)phthalate | 39.2      | ug/l | 1 | -    | ~   | Yes |
| Fluoranthene               | 41.6      | ug/l | 1 |      | *   | Yes |
| Fluorene                   | 38.8      | ug/l | 1 | 4    | 2   | Yes |
| Hexachlorobenzene          | 38.7      | ug/l | 1 | -    | *   | Yes |
| Hexachlorobutadiene        | 33.3      | ug/l | 1 |      | 7.  | Yes |
| Hexachlorocyclopentadiene  | 73.1      | ug/l | 1 | _    | 2   | Yes |
| Hexachloroethane           | 33.5      | ug/l | 1 | -    | *   | Yes |
| Indeno(1,2,3-cd)pyrene     | 42.7      | ug/l | 1 |      | -   | Yes |
| Isophorone                 | 30.3      | ug/l | 1 |      |     | Yes |
| 1-Methylnaphthalene        | 36.1      | ug/l | 1 |      |     | Yes |
| 2-Methylnaphthalene        | 33.4      | ug/l | 1 | -    | 2   | Yes |
| 2-Nitroaniline             | 35.2      | ug/l | 1 | -    | ¥.  | Yes |
| 3-Nitroaniline             | 37.2      | ug/l | 1 | -    | 7   | Yes |
| 4-Nitroaniline             | 44.2      | ug/l | 1 | -    | 9   | Yes |
| Nitrobenzene               | 27.8      | ug/l | 1 |      | *   | Yes |
| N-Nitroso-di-n-propylamine | 27.0      | ug/l | 1 | -    | -   | Yes |
| Nitrosodiphenylamine       | 39.8      | ug/l | 1 | -    | 5   | Yes |
| Phenanthrene               | 37.2      | ug/l | 1 | -    | 5   | Yes |
| Pyrene                     | 38.8      | ug/l | 1 | -    | 7   | Yes |
| 1,2,4,5-Tetrachlorobenzene | 41.8      | ug/l | 1 | -    | ~   | Yes |
| METHOD: 8                  | 8270D (SI | M)   |   |      |     |     |
| Naphthalene                | 0.906     | ug/l | 1 | -    | -   | Yes |
| 1,4-Dioxane                | 12.1      | ug/l | 1 |      | *   | Yes |

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016 Matrix: Groundwater

| Analyte Name                | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-----------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol              | 34.8   | ug/l  | 1               | _        | -          | Yes        |
| 4-Chloro-3-methyl phenol    | 38.9   | ug/l  | 1               | -        | -          | Yes        |
| 2,4-Dichlorophenol          | 38.8   | ug/l  | 1               | -        | -          | Yes        |
| 2,4-Dimethylphenol          | 35.2   | ug/l  | 1               | -        | -          | Yes        |
| 2,4-Dinitrophenol           | 97.2   | ug/l  | 1               | -        | -          | Yes        |
| 4,6-Dinitro-o-cresol        | 43.3   | ug/l  | 1               | -        | -          | Yes        |
| 2-Methylphenol              | 31.8   | ug/l  | 1               | -        | -          | Yes        |
| 3&4-Methylphenol            | 30.1   | ug/l  | 1               | -        | -          | Yes        |
| 2-Nitrophenol               | 40.3   | ug/l  | 1               | -        | -          | Yes        |
| 4-Nitrophenol               | 32.8   | ug/l  | 1               | -        | -          | Yes        |
| Pentachlorophenol           | 52.4   | ug/l  | 1               | -        | -          | Yes        |
| Phenol                      | 18.6   | ug/l  | 1               | -        | -          | Yes        |
| 2,3,4,6-Tetrachlorophenol   | 51.2   | ug/l  | 1               | -        | -          | Yes        |
| 2,4,5-Trichlorophenol       | 43.9   | ug/l  | 1               | -        | -          | Yes        |
| 2,4,6-Trichlorophenol       | 46.9   | ug/l  | 1               | -        | -          | Yes        |
| Acenaphthene                | 40.3   | ug/l  | 1               | -        | -          | Yes        |
| Acenaphthylene              | 40.3   | ug/l  | 1               | -        | -          | Yes        |
| Acetophenone                | 37.9   | ug/l  | 1               | -        | -          | Yes        |
| Anthracene                  | 41.9   | ug/l  | 1               | -        | -          | Yes        |
| Atrazine                    | 69.5   | ug/l  | 1               | -        | -          | Yes        |
| Benzaldehyde                | 40.1   | ug/l  | 1               | -        | •          | Yes        |
| Benzo(a)anthracene          | 43.9   | ug/l  | 1               | -        | -          | Yes        |
| Benzo(a)pyrene              | 46.4   | ug/l  | 1               | -        | -          | Yes        |
| Benzo(b)fluoranthene        | 45.3   | ug/l  | 1               | -        | -          | Yes        |
| Benzo(g,h,i)perylene        | 40.7   | ug/l  | 1               | -        | -          | Yes        |
| Benzo(k)fluoranthene        | 43.0   | ug/l  | 1               | -        | -          | Yes        |
| 4-Bromophenyl phenyl ether  | 45.0   | ug/l  | 1               | -        | -          | Yes        |
| Butyl benzyl phthalate      | 47.0   | ug/l  | 1               | -        | -          | Yes        |
| 1,1'-Biphenyl               | 42.9   | ug/l  | 1               | -        | -          | Yes        |
| 2-Chloronaphthalene         | 39.1   | ug/l  | 1               | -        | -          | Yes        |
| 4-Chloroaniline             | 26.8   | ug/l  | 1               | -        | -          | Yes        |
| Carbazole                   | 44.7   | ug/l  | 1               | -        | -          | Yes        |
| Caprolactam                 | 10.5   | ug/l  | 1               | -        | -          | Yes        |
| Chrysene                    | 40.2   | ug/l  | 1               | -        | -          | Yes        |
| bis(2-Chloroethoxy)methane  | 31.6   | ug/l  | 1               | -        | -          | Yes        |
| bis(2-Chloroethyl)ether     | 33.0   | ug/l  | 1               | -        | -          | Yes        |
| bis(2-Chloroisopropyl)ether | 32.2   | ug/l  | 1               | -        | -          | Yes        |

| 43.3      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 51.2      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 49.7      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 80.8      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 25.4      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 43.0      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes         |
| 41.3      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes         |
| 47.8      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 44.0      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes         |
| 43.8      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 42.1      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 41.7      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 46.2      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 42.9      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 42.3      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes         |
| 33.1      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 78.5      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes         |
| 31.8      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 44.5      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 32.4      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes         |
| 38.1      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 35.0      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 39.3      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes         |
| 38.9      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 48.8      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 28.6      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 27.8      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 43.9      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes         |
| 41.0      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 42.6      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 44.6      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes         |
| 8270D (SI | M)                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 0.944     | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
| 13.2      | ug/l                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes         |
|           | 51.2<br>49.7<br>80.8<br>25.4<br>43.0<br>41.3<br>47.8<br>44.0<br>43.8<br>42.1<br>41.7<br>46.2<br>42.9<br>42.3<br>33.1<br>78.5<br>31.8<br>44.5<br>32.4<br>38.1<br>35.0<br>39.3<br>38.9<br>48.8<br>28.6<br>27.8<br>43.9<br>41.0<br>42.6<br>44.6 | 51.2 ug/l 49.7 ug/l 80.8 ug/l 25.4 ug/l 43.0 ug/l 41.3 ug/l 47.8 ug/l 44.0 ug/l 43.8 ug/l 42.1 ug/l 41.7 ug/l 46.2 ug/l 42.9 ug/l 42.9 ug/l 33.1 ug/l 78.5 ug/l 31.8 ug/l 32.4 ug/l 38.1 ug/l 38.1 ug/l 38.9 ug/l 38.9 ug/l 38.9 ug/l 48.8 ug/l 48.8 ug/l 28.6 ug/l 27.8 ug/l 43.9 ug/l 43.9 ug/l 43.9 ug/l 44.6 ug/l 8270D (SiM) 0.944 ug/l | 51.2 ug/l 1 49.7 ug/l 1 80.8 ug/l 1 25.4 ug/l 1 43.0 ug/l 1 41.3 ug/l 1 47.8 ug/l 1 44.0 ug/l 1 43.8 ug/l 1 42.1 ug/l 1 46.2 ug/l 1 42.9 ug/l 1 33.1 ug/l 1 33.1 ug/l 1 31.8 ug/l 1 31.8 ug/l 1 31.8 ug/l 1 32.4 ug/l 1 38.1 ug/l 1 38.9 ug/l 1 48.8 ug/l 1 48.8 ug/l 1 48.8 ug/l 1 48.8 ug/l 1 48.9 ug/l 1 48.9 ug/l 1 48.9 ug/l 1 41.0 ug/l 1 42.6 ug/l 1 42.6 ug/l 1 8270D (SIM) 0.944 ug/l 1 | 51.2 ug/l 1 - 49.7 ug/l 1 - 80.8 ug/l 1 - 25.4 ug/l 1 - 43.0 ug/l 1 - 41.3 ug/l 1 - 47.8 ug/l 1 - 44.0 ug/l 1 - 43.8 ug/l 1 - 43.8 ug/l 1 - 42.1 ug/l 1 - 42.2 ug/l 1 - 42.9 ug/l 1 - 42.3 ug/l 1 - 33.1 ug/l 1 - 33.8 ug/l 1 - 33.9 ug/l 1 - 38.9 ug/l 1 - 38 | 51.2 ug/l 1 |

.

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016 Matrix: Groundwater

| Analyte Name               | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|----------------------------|--------|-------|------------------------|----------|------------|------------|
| 2-Chlorophenol             | 38.7   | ug/l  | 1                      | -        | -          | Yes        |
| 4-Chloro-3-methyl phenol   | 39.7   | ug/l  | 1                      | -        | -          | Yes        |
| 2,4-Dichlorophenol         | 40.4   | ug/l  | 1                      | -        | -          | Yes        |
| 2,4-Dimethylphenol         | 37.1   | ug/l  | 1                      | -        | -          | Yes        |
| 2,4-Dinitrophenol          | 117    | ug/l  | 1                      | -        | -          | Yes        |
| 4,6-Dinitro-o-cresol       | 48.2   | ug/l  | 1                      | -        | ~          | Yes        |
| 2-Methylphenol             | 35.0   | ug/l  | 1                      | -        | -          | Yes        |
| 3&4-Methylphenol           | 34.2   | ug/l  | 1                      | -        | -          | Yes        |
| 2-Nitrophenol              | 43.6   | ug/l  | 1                      | -        | -          | Yes        |
| 4-Nitrophenol              | 32.3   | ug/l  | 1                      | -        | -          | Yes        |
| Pentachlorophenol          | 51.4   | ug/l  | 1                      | -        | -          | Yes        |
| Phenol                     | 21.7   | ug/l  | 1                      | -        | -          | Yes        |
| 2,3,4,6-Tetrachlorophenoi  | 51.7   | ug/l  | 1                      | -        | -          | Yes        |
| 2,4,5-Trichlorophenol      | 46.1   | ug/l  | 1                      | -        | -          | Yes        |
| 2,4,6-Trichlorophenol      | 48.6   | ug/l  | 1                      | -        | -          | Yes        |
| Acenaphthene               | 41.0   | ug/l  | 1                      | -        | -          | Yes        |
| Acenaphthylene             | 41.2   | ug/l  | 1                      | -        | -          | Yes        |
| Acetophenone               | 43.0   | ug/l  | 1                      | -        | -          | Yes        |
| Anthracene                 | 42.3   | ug/l  | 1                      | -        | -          | Yes        |
| Atrazine                   | 67.6   | ug/l  | 1                      | -        | -          | Yes        |
| Benzaldehyde               | 43.4   | ug/l  | 1                      | -        | -          | Yes        |
| Benzo(a)anthracene         | 44.6   | ug/l  | 1                      | -        | -          | Yes        |
| Benzo(a)pyrene             | 45.7   | ug/l  | 1                      | -        | -          | Yes        |
| Benzo(b)fluoranthene       | 44.5   | ug/l  | 1                      | -        | -          | Yes        |
| Benzo(g,h,i)perylene       | 40.2   | ug/l  | 1                      | -        | -          | Yes        |
| Benzo(k)fluoranthene       | 43.0   | ug/l  | 1                      | -        | -          | Yes        |
| 4-Bromophenyl phenyl ether | 45.9   | ug/l  | 1                      | -        | -          | Yes        |
| Butyl benzyl phthalate     | 50.0   | ug/l  | 1                      | -        | -          | Yes        |
| 1,1'-Biphenyl              | 44.5   | ug/l  | 1                      | -        | -          | Yes        |
| 2-Chloronaphthalene        | 40.7   | ug/l  | 1                      | -        | -          | Yes        |
| 4-Chloroaniline            | 18.2   | ug/l  | 1                      | -        | -          | Yes        |
| Carbazole                  | 45.5   | ug/l  | 1                      | -        | -          | Yes        |
| Caprolactam                | 14.9   | ug/l  | 1                      | -        | -          | Yes        |
| Chrysene                   | 40.5   | ug/l  | 1                      | -        | -          | Yes        |
| bis(2-Chloroethoxy)methane | 37.2   | ug/l  | 1                      | -        | -          | Yes        |
| bis(2-Chloroethyl)ether    | 40.6   | ug/l  | 1                      | -        | -          | Yes        |
|                            |        |       |                        |          |            |            |

| bis(2-Chloroisopropyl)ether | 36.6        | ug/l | 1 | -              |          | Yes |
|-----------------------------|-------------|------|---|----------------|----------|-----|
| 4-Chlorophenyl phenyl ether | 43.0        | ug/l | 1 |                | 2        | Yes |
| 2,4-Dinitrotoluene          | 52.4        | ug/l | 1 | -              | _        | Yes |
| 2,6-Dinitrotoluene          | 52.7        | ug/l | 1 |                | -        | Yes |
| 3,3'-Dichlorobenzidine      | 53.8        | ug/l | 1 | 2              | -        | Yes |
| 1,4-Dioxane                 | 1090        | ug/l | 1 |                | -        | Yes |
| Dibenzo(a,h)anthracene      | 42.6        | ug/l | 1 | _              | 2        | Yes |
| Dibenzofuran                | 42.5        | ug/l | 1 | -              | -        | Yes |
| Di-n-butyl phthalate        | 49.6        | ug/l | 1 | -              |          | Yes |
| Di-n-octyl phthalate        | 45.9        | ug/l | 1 | 2              |          | Yes |
| Diethyl phthalate           | 45.1        | ug/l | 1 | -              |          | Yes |
| Dimethyl phthalate          | 43.6        | ug/l | 1 | -              |          | Yes |
| bis(2-Ethylhexyl)phthalate  | 43.9        | ug/l | 1 | -              | -        | Yes |
| Fluoranthene                | 46.4        | ug/l | 1 |                |          | Yes |
| Fluorene                    | 42.6        | ug/l | 1 | -              | -        | Yes |
| Hexachlorobenzene           | 43.0        | ug/l | 1 |                | *        | Yes |
| Hexachlorobutadiene         | 32.9        | ug/l | 1 | -              | -        | Yes |
| Hexachlorocyclopentadiene   | 84.0        | ug/l | 1 | -              | -        | Yes |
| Hexachloroethane            | 36.0        | ug/l | 1 | -              | -        | Yes |
| Indeno(1,2,3-cd)pyrene      | 43.0        | ug/l | 1 | . 5.           |          | Yes |
| Isophorone                  | 38.3        | ug/l | 1 | -              | 5        | Yes |
| 1-Methylnaphthalene         | 38.9        | ug/l | 1 | -              | -        | Yes |
| 2-Methylnaphthalene         | 36.4        | ug/l | 1 | -              | 2        | Yes |
| 2-Nitroaniline              | 50.4        | ug/l | 1 | 1-1            | -        | Yes |
| 3-Nitroaniline              | 28.5        | ug/l | 1 | \$ <b>7</b> .6 |          | Yes |
| 4-Nitroaniline              | 49.8        | ug/l | 1 | 12%            | 2        | Yes |
| Nitrobenzene                | 35.9        | ug/l | 1 |                | -        | Yes |
| N-Nitroso-di-n-propylamine  | 38.1        | ug/l | 1 |                | .5       | Yes |
| Nitrosodiphenylamine        | 44.8        | ug/l | 1 | -              | 4        | Yes |
| Phenanthrene                | 41.1        | ug/l | 1 | -              | -        | Yes |
| Pyrene                      | 43.5        | ug/l | 1 | -              | 2        | Yes |
| 1,2,4,5-Tetrachlorobenzene  | 45.3        | ug/l | 1 | -              | .99      | Yes |
| METHOD                      | : 8270D (SI | M)   |   |                |          |     |
| Naphthalene                 | 0.758       | ug/l | 1 | -              | <u> </u> | Yes |
| 1,4-Dioxane                 | 475         | ug/l | 1 | -              | -        | Yes |

Sample ID: JC22206-9MSD

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016 Matrix: Groundwater

## METHOD: 8270D

| Analyte Name                    | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol                  | 31.3   | ug/l  | 1               | -        | -          | Yes        |
| 4-Chloro-3-methyl phenol        | 31.7   | ug/l  | 1               | -        | -          | Yes        |
| 2,4-Dichlorophenol              | 33.3   | ug/l  | 1               | -        | -          | Yes        |
| 2,4-Dimethylphenol              | 30.6   | ug/l  | 1               | -        | -          | Yes        |
| 2,4-Dinitrophenol               | 87.0   | ug/l  | 1               | -        | -          | Yes        |
| 4,6-Dinitro-o-cresol            | 36.9   | ug/l  | 1               | -        | -          | Yes        |
| 2-Methylphenol                  | 29.4   | ug/l  | 1               | -        | -          | Yes        |
| 3&4-Methylphenol                | 28.7   | ug/l  | 1               | -        | -          | Yes        |
| 2-Nitrophenol                   | 35.2   | ug/l  | 1               | -        | -          | Yes        |
| 4-Nitrophenol                   | 25.1   | ug/l  | 1               | -        | -          | Yes        |
| Pentachlorophenol               | 37.9   | ug/l  | 1               | -        | -          | Yes        |
| Phenol                          | 18.3   | ug/l  | 1               | -        | -          | Yes        |
| 2,3,4,6-Tetrachlorophenol       | 39.9   | ug/l  | 1               | -        | -          | Yes        |
| 2,4,5-Trichlorophenol           | 35.4   | ug/l  | 1               | -        | -          | Yes        |
| 2,4,6-Trichlorophenol           | 38.0   | ug/l  | 1               | -        | -          | Yes        |
| Acenaphthene                    | 32.0   | ug/l  | 1               | -        | -          | Yes        |
| Acenaphthylene                  | 32.0   | ug/l  | 1               | -        | -          | Yes        |
| Acetophenone                    | 34.8   | ug/l  | 1               | -        | -          | Yes        |
| Anthracene                      | 32.3   | ug/l  | 1               | -        | -          | Yes        |
| Atrazine                        | 52.6   | ug/l  | 1               | -        | -          | Yes        |
| Benzaldehyde                    | 38.5   | ug/l  | 1               | -        | -          | Yes        |
| Benzo(a)anthracene              | 34.1   | ug/l  | 1               | -        | -          | Yes        |
| Benzo(a)pyrene                  | 34.7   | ug/l  | 1               | -        | -          | Yes        |
| Benzo(b)fluoranthene            | 34.0   | ug/l  | 1               | -        | -          | Yes        |
| Benzo(g,h,i)perylene            | 30.1   | ug/l  | 1               | -        | •          | Yes        |
| Benzo(k)fluoranthene            | 33.4   | ug/l  | 1               | -        | -          | Yes        |
| 4-Bromophenyl phenyl ether      | 35.5   | ug/l  | 1               | -        | -          | Yes        |
| Butyl benzyl phthalate          | 37.8   | ug/l  | 1               | -        | -          | Yes        |
| 1,1'-Biphenyl                   | 35.4   | ug/l  | 1               | -        | -          | Yes        |
| 2-Chloronaphthalene             | 32.3   | ug/l  | 1               | -        | -          | Yes        |
| 4-Chloroaniline                 | 22.3   | ug/l  | 1               | -        | -          | Yes        |
| Carbazole                       | 34.8   | ug/l  | 1               | -        | -          | Yes        |
| Caprolactam                     | 11.3   | ug/l  | 1               | -        | -          | Yes        |
| Chrysene                        | 31.5   | ug/l  | 1               | -        | -          | Yes        |
| bis(2-Chloroethoxy)methane      | 30.6   | ug/l  | 1               | -        | -          | Yes        |
| bis(2-Chloroethyl)ether         | 32.7   | ug/l  | 1               | -        | -          | Yes        |
| bis (2-Chloro is opropyl) ether | 29.2   | ug/l  | 1               | -        | -          | Yes        |

| 4-Chlorophenyl phenyl ether | 34.0       | ug/l | 1 | -     | .5  | Yes |
|-----------------------------|------------|------|---|-------|-----|-----|
| 2,4-Dinitrotoluene          | 39.2       | ug/l | 1 | -     | 2   | Yes |
| 2,6-Dinitrotoluene          | 40.1       | ug/l | 1 | -     | 6   | Yes |
| 3,3'-Dichlorobenzidine      | 54.2       | ug/l | 1 | -     | Œ   | Yes |
| 1,4-Dioxane                 | 1020       | ug/l | 1 | -     | ~   | Yes |
| Dibenzo(a,h)anthracene      | 31.7       | ug/l | 1 | -     | -   | Yes |
| Dibenzofuran                | 33.0       | ug/l | 1 | 424   | 0   | Yes |
| Di-n-butyl phthalate        | 37.6       | ug/l | 1 | -     | -   | Yes |
| Di-n-octyl phthalate        | 34.5       | ug/l | 1 | -     | 5   | Yes |
| Diethyl phthalate           | 34.5       | ug/l | 1 | -     | 2   | Yes |
| Dimethyl phthalate          | 33.6       | ug/l | 1 | -     |     | Yes |
| bis(2-Ethylhexyl)phthalate  | 33.4       | ug/l | 1 | -     | -   | Yes |
| Fluoranthene                | 35.6       | ug/l | 1 |       | -   | Yes |
| Fluorene                    | 33.2       | ug/l | 1 | -     | 7   | Yes |
| Hexachlorobenzene           | 33.2       | ug/l | 1 | -     | 2   | Yes |
| Hexachlorobutadiene         | 28.0       | ug/l | 1 | -     | -   | Yes |
| Hexachlorocyclopentadiene   | 64.1       | ug/l | 1 | 17.3  | 2   | Yes |
| Hexachloroethane            | 29.2       | ug/l | 1 | -     | u u | Yes |
| Indeno(1,2,3-cd)pyrene      | 32.1       | ug/l | 1 | 1 - 1 | -   | Yes |
| Isophorone                  | 31.4       | ug/i | 1 | -     | -   | Yes |
| 1-Methylnaphthalene         | 32.1       | ug/l | 1 | -     | -   | Yes |
| 2-Methylnaphthalene         | 30.0       | ug/l | 1 | -     |     | Yes |
| 2-Nitroaniline              | 39.0       | ug/l | 1 | -     | - 2 | Yes |
| 3-Nitroaniline              | 30.6       | ug/l | 1 | -     | -   | Yes |
| 4-Nitroaniline              | 37.6       | ug/l | 1 | -     | 7.7 | Yes |
| Nitrobenzene                | 29.1       | ug/l | 1 | -     | 1   | Yes |
| N-Nitroso-di-n-propylamine  | 30.7       | ug/l | 1 | -     | -   | Yes |
| Nitrosodiphenylamine        | 34.5       | ug/l | 1 | -     | -   | Yes |
| Phenanthrene                | 32.1       | ug/l | 1 | -     | -   | Yes |
| Pyrene                      | 33.6       | ug/l | 1 | -     | 1-  | Yes |
| 1,2,4,5-Tetrachlorobenzene  | 36.4       | ug/l | 1 | 12.0  | -   | Yes |
| METHOD:                     | 8270D (SII | M)   |   |       |     |     |
| Naphthalene                 | 0.826      | ug/l | 1 | -     | -   | Yes |
| 1,4-Dioxane                 | 509        | ug/l | 1 | -     |     | Yes |
|                             |            |      |   |       |     |     |

E.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project Number:_JC22206  Date: June_10-14,_2016  Shipping Date:June_14,_2016                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA Region:2_                                                                                                                                                                                                                    |
| REVIEW OF SEMIVOLATILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ORGANIC PACKAGE                                                                                                                                                                                                                  |
| The following guidelines for evaluating volatile or validation actions. This document will assist the make more informed decision and in better serving esults were assessed according to USEPA day collowing order of precedence: EPA Hazardous volumes and the collowing order of precedence of the collowing order of precedence of the collowing order of precedence of the collowing order | reviewer in using professional judgment to<br>g the needs of the data users. The sample<br>ata validation guidance documents in the<br>Waste Support Section, SOP HW-35A, July<br>QC criteria and data validation actions listed |
| The hardcopied (laboratory name) _Accutesteviewed and the quality control and performance dancluded:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | data package received has been ata summarized. The data review for SVOCs                                                                                                                                                         |
| .ab. Project/SDG No.:JC22206<br>No. of Samples:15_Full_scan/15_SIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample matrix:Groundwater                                                                                                                                                                                                        |
| rip blank No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |
| X Butta completenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits                                                                                                                       |
| Overall Comments:_ABN_TCL_list_by_method_SW846-<br>analyzed_by_method_SW846-8270D_(SIM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |
| Definition of Qualifiers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |
| I- Estimated results  J- Compound not detected  R- Rejected data  JJ- Estimated nondetect  Reviewer: 444 444 444 444 444 444 444 444 444 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |

# DATA COMPLETENESS

| MISSING INFORMATION                     | DATE LAB. CONTACTED | DATE RECEIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 4.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     | 8 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 900 g 0-80 42.                          | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | •                   | \(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\tin}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\tint{\text{\texi}\tint{\text{\texi}\text{\texi}\text{\texi}\tex{\texi}\text{\texi}\text{\texit{\texi}\text{\texi}\text{\texi}\ti |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0000000000000000000000000000000000000 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 172-                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| All criteria were met | X |
|-----------------------|---|
| Criteria were not met |   |
| and/or see below      | - |

## **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID                                                                | DATE<br>SAMPLED                                                                                     | DATE<br>EXTRACTED/ANALYZED | pН | ACTION                               |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|----|--------------------------------------|--|--|
|                                                                          |                                                                                                     |                            |    |                                      |  |  |
|                                                                          | All samples extracted and analyzed within method recommended holding time except for the cases      |                            |    |                                      |  |  |
|                                                                          | described in this document. Sample re-extracted outside holding time to confirm presence of analyte |                            |    |                                      |  |  |
| found in corresponding method blank. Sample preservation was acceptable. |                                                                                                     |                            |    |                                      |  |  |
| JC22206-4                                                                | 6/13/16                                                                                             | 6/30/16                    |    | Results for 1,4-dioxane qualified as |  |  |
| JC22206-5                                                                | 6/13/16                                                                                             | 6/30/16                    |    | estimated (J) in affected samples    |  |  |

| Cooler temperature | (Criteria: 4 | 4 <u>+</u> 2 ºC): ˌ | 5.2°C |  |
|--------------------|--------------|---------------------|-------|--|
|                    |              |                     |       |  |

## <u>Actions</u>

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

|             | i abie i. Holui | ing Time Actions for Semivo                            |                      |                                 |  |
|-------------|-----------------|--------------------------------------------------------|----------------------|---------------------------------|--|
|             |                 |                                                        | Action               |                                 |  |
| Matrix      | Preserved       | Criteria                                               | Detected             | Non-Detected                    |  |
|             |                 |                                                        | Associated Compounds | Associated<br>Compounds         |  |
|             | No              | < 7 days (for extraction)                              |                      | onal judgment                   |  |
|             | No              | > 7 days (for extraction)<br>> 40 days (for analysis)  | J                    | Use<br>professional<br>judgment |  |
| Aqueous     | Yes             | ≤ 7 days (for extraction)<br>≤ 40 days (for analysis)  | No qua               | lification                      |  |
|             | Yes             | > 7 days (for extraction)<br>> 40 days (for analysis)  | J                    | ບມ                              |  |
|             | Yes/No          | Grossly Exceeded                                       | J                    | UJ or R                         |  |
|             | No              | ≤ 14 days (for extraction)<br>≤ 40 days (for analysis) | Use profession       | onal judgment                   |  |
|             | No              | > 14 days (for extraction)<br>> 40 days (for analysis) | J                    | Use<br>professional<br>judgment |  |
| Non-Aqueous | Yes             | ≤ 14 days (for extraction)<br>≤ 40 days (for analysis) | No qualification     |                                 |  |
|             | Yes             | > 14 days (for extraction)<br>> 40 days (for analysis) | J                    | UJ                              |  |
|             | Yes/No          | Grossly Exceeded                                       | J                    | UJ or R                         |  |

|                     |                      | All criteria were met _ Criteria were not met see below                                                                                                                                                                    |        |
|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| GC/MS               | TUNING               | G                                                                                                                                                                                                                          |        |
|                     | sessmer<br>QC limits | nt of the tuning results is to determine if the sample instrumentation is within the stan                                                                                                                                  | dard   |
| _X                  | The DF               | FTPP performance results were reviewed and found to be within the specified criteria                                                                                                                                       | •      |
| _X                  | DFTPP                | tuning was performed for every 12 hours of sample analysis.                                                                                                                                                                |        |
| f no, u<br>or rejec |                      | essional judgment to determine whether the associated data should be accepted, qua                                                                                                                                         | lified |
|                     | Notes:               | These requirements do not apply when samples are analyzed by the Selected Monitoring (SIM) technique.                                                                                                                      | nol t  |
|                     | Notes:               | All mass spectrometer conditions must be identical to those used during the sa analysis. Background subtraction actions resulting in spectral distortion unacceptable  No data should be qualified based of DFTPP failure. | •      |
|                     |                      | The requirement to analyze the instrument performance check solution is optional variables of PAHs/pentachlorophenol is to be performed by the SIM technique.                                                              | when   |
| List                |                      | the samples affe                                                                                                                                                                                                           | cted:  |
|                     |                      |                                                                                                                                                                                                                            |        |
|                     |                      |                                                                                                                                                                                                                            |        |

## Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

| All criteria were met | _X |
|-----------------------|----|
| Criteria were not met |    |
| and/or see below      | _  |

## **INITIAL CALIBRATION VERIFICATION**

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

|                              | 06/09/16;_06/22/16_(Scan)                                                                                                                                  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instrument ID numbers:       | GCMSF                                                                                                                                                      |
| Matrix/Level:                | Aqueous/low                                                                                                                                                |
| Date of initial calibration: | 06/14-15/16_(Scan)                                                                                                                                         |
| Instrument ID numbers:       | GCMSZ                                                                                                                                                      |
| Matrix/Level:                | _Aqueous/low                                                                                                                                               |
| Date of initial calibration: | 06/20/2016_(SIM)                                                                                                                                           |
| Instrument ID numbers:       | GCMS4M                                                                                                                                                     |
| Matrix/Level:                | Aqueous/low                                                                                                                                                |
|                              | Instrument ID numbers: Matrix/Level: Date of initial calibration: Instrument ID numbers: Matrix/Level: Date of initial calibration: Instrument ID numbers: |

| DATE | LAB<br>ID# | FILE | CRITERIA OUT<br>RFs, %RSD, %D, r | COMPOUND | SAMPLES<br>AFFECTED                                  |
|------|------------|------|----------------------------------|----------|------------------------------------------------------|
|      |            |      | ther instrument used             |          | ance validation document amples for this job. The QC |

## Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

| Criteria                                                              |                                         | Action                      |  |
|-----------------------------------------------------------------------|-----------------------------------------|-----------------------------|--|
| Criteria                                                              | Detect                                  | Non-detect                  |  |
| Initial Calibration not performed at specified frequency and sequence | Use professional judgment R             | Use professional judgment R |  |
| Initial Calibration not performed at the specified concentrations     | J                                       | ÚJ                          |  |
| RRF < Minimum RRF in Table 2 for target analyte                       | Use professional<br>judgment<br>J+ or R | R                           |  |
| RRF ≥ Minimum RRF in Table 2 för target<br>analyte                    | No qualification                        | No qualification            |  |
| %RSD > Maximum %RSD in Table 2 for target analyte                     | J                                       | Use professional judgment   |  |
| %RSD ≤ Maximum %RSD in Table 2 for target analyte                     | No qualification                        | No qualification            |  |

# **Initial Calibration**

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

| Analyte                       | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum<br>%D <sup>1</sup> | Opening<br>Maximum<br>%D <sup>1</sup> |
|-------------------------------|----------------|-----------------|---------------------------------------|---------------------------------------|
| 1,4-Dioxane                   | 0.010          | 40.0            | ± 40.0                                | = 50.0                                |
| Benzaldehyde                  | 0,100          | 40.0            | ± 40.0                                | = 50.0                                |
| Phenol                        | 0.080          | 20.0            | ± 20.0                                | ±25.0                                 |
| Bis(2-chloroethyl)ether       | 0.100          | 20.0            | = 20.0                                | = 25.0                                |
| 2-Chlorophenol                | 0.200          | 20,0            | ±20.0                                 | ±25.0                                 |
| 2-Methylphenol                | 0.010          | 20,0            | ≥ 20.0                                | ± 25.0                                |
| 3-Methylphenol                | 0.010          | 20.0            | ± 20.0                                | ±25.0                                 |
| 2,2'-Oxybis-(1-chloropropane) | 0.010          | 20.0            | ± 25.0                                | ± 50.0                                |
| Acetophenone                  | 0.060          | 20,0            | £ 20.0                                | = 25.0                                |
| 4-Methylphenol                | 0.010          | 20.0            | € 20.0                                | ±25.0                                 |
| N-Nitroso-di-n-propylamine    | 0,080          | 20.0            | ±25.0                                 | = 25.0                                |
| Hexachloroethane              | 0.100          | 20.0            | ± 20.0                                | ±25.0                                 |
| Nitrobenzene                  | 0.090          | 20.0            | ± 20.0                                | ±25.0                                 |
| Isophorone                    | 0.100          | 20.0            | = 20.0                                | ±25.0                                 |
| 2-Nitrophenol                 | 0.060          | 20,0            | = 20.0                                | = 25.0                                |
| 2,4-Dimethylphenol            | 0.050          | 20.0            | €25.0                                 | ±50.0                                 |
| Bis(2-chloroethoxy)methane    | 0.080          | 20.0            | = 20.0                                | ±25.0                                 |
| 2,4-Dichlorophenol            | 0.060          | 20,0            | ± 20.0                                | ±25,0                                 |
| Naphthalene                   | 0.200          | 20.0            | €20.0                                 | = 25.0                                |
| 4-Chloroaniline               | 0.010          | 40.0            | = 40.0                                | ±50.0                                 |
| Hexachlorobutadiene           | 0.040          | 20.0            | ± 20.0                                | ±25.0                                 |
| Caprolactam                   | 0.010          | 40.0            | ± 30.0                                | ± 50.0                                |
| 4-Chloro-3-methylphenol       | 0.040          | 20.0            | ± 20.0                                | ± 25.0                                |
| 2-Methylnaphthalene           | 0.100          | 20,0            | ± 20.0                                | ±25.0                                 |
| Hexachlorocyclopentadiene     | 0,010          | 40.0            | ± 40.0                                | ± 50.0                                |
| 2,4,6-Trichlorophenol         | 0.090          | 20.0            | ± 20.0                                | = 25.0                                |
| 2,4,5-Trichlorophenol         | 0,100          | 20,0            | ± 20.0                                | ± 25.0                                |
| 1,1'-Biphenyl                 | 0.200          | 20.0            | =20.0                                 | = 25.0                                |
|                               |                |                 | -                                     |                                       |

| Analyte                    | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum<br>%D <sup>1</sup> | Opening<br>Maximum<br>%D <sup>1</sup> |
|----------------------------|----------------|-----------------|---------------------------------------|---------------------------------------|
| 2-Chloronaphthalene        | 0.300          | 20.0            | = 20.0                                | ±25.0                                 |
| 2-Nitroaniline             | 0.060          | 20.0            | ±25.0                                 | ± 25.0                                |
| Dimethylphthalate          | 0.300          | 20.0            | ± 25.0                                | ± 25.0                                |
| 2,6-Dinitrotoluene         | 0.080          | 20.0            | ±20.0                                 | ±25.0                                 |
| Acenaphthylene             | 0.400          | 20,0            | ±20.0                                 | ±25.0                                 |
| 3-Nitroaniline             | 0,010          | 20.0            | ±25.0                                 | ± 50.0                                |
| Acenaphthene               | 0,200          | 20.0            | ± 20.0                                | ± 25.0                                |
| 2,4-Dinitrophenol          | 0.010          | 40.0            | ± 50.0                                | ± 50.0                                |
| 4-Nitrophenol              | 0.010          | 40.0            | = 40.0                                | ± 50.0                                |
| Dibenzofuran               | 0.300          | 20.0            | ±20.0                                 | ±25.0                                 |
| 2,4-Dinitrotoluene         | 0.070          | 20.0            | ±20.0                                 | ±25.0                                 |
| Diethylphthalate           | 0.300          | 20.0            | ± 20.0                                | ± 25.0                                |
| 1,2,4,5-Tetrachlorobenzene | 0,100          | 20.0            | ±20.0                                 | ±25.0                                 |
| 4-Chlorophenyl-phenylether | 0,100          | 20.0            | ±20.0                                 | ± 25.0                                |
| Fluorene                   | 0,200          | 20.0            | ±20.0                                 | ± 25.0                                |
| 4-Nitroaniline             | 0.010          | 40.0            | ±40.0                                 | ± 50.0                                |
| 4,6-Dinitro-2-methylphenol | 0.010          | 40.0            | ±30.0                                 | ± 50.0                                |
| 4-Bromophenyl-phenyl ether | 0.070          | 20,0            | ±20.0                                 | ± 25.0                                |
| N-Nitrosodiphenylamine     | 0.100          | 20.0            | ± 20.0                                | ±25.0                                 |
| Hexachlorobenzene          | 0.050          | 20.0            | ± 20.0                                | ± 25.0                                |
| Atrazine                   | 0.010          | 40.0            | ±25.0                                 | ± 50.0                                |
| Pentachlorophenol          | 0.010          | 40.0            | ±40.0                                 | ± 50.0                                |
| Phenanthrene               | 0.200          | 20.0            | ±20.0                                 | ± 25.0                                |
| Anthracene                 | 0.200          | 20.0            | ± 20.0                                | ±25.0                                 |
| Carbazole                  | 0.050          | 20.0            | ± 20.0                                | ±25.0                                 |
| Di-n-butylphthalate        | 0.500          | 20,0            | ±20.0                                 | ± 25.0                                |
| Fluoranthene               | 0.100          | 20.0            | ±20.0                                 | ± 25.0                                |
| Pyrene                     | 0.400          | 20.0            | ± 25.0                                | ± 50.0                                |
| Butylbenzylphthalate       | 0.100          | 20.0            | ±25.0                                 | ± 50.0                                |

| Analyte                     | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum<br>%D¹ | Opening<br>Maximum<br>%D¹ |
|-----------------------------|----------------|-----------------|---------------------------|---------------------------|
| 3,3'-Dichlorobenzidine      | 0.010          | 40.0            | ±40.0                     | ± 50.0                    |
| Benzo(a)anthracene          | 0.300          | 20.0            | ±20.0                     | ± 25.0                    |
| Chrysene                    | 0.200          | 20.0            | ±20.0                     | ± 50.0                    |
| Bis(2-ethylhexyl) phthalate | 0.200          | 20.0            | ±25.0                     | ± 50.0                    |
| Di-n-octylphthalate         | 0.010          | 40.0            | ± 40.0                    | ± 50.0                    |
| Benzo(b)fluoranthene        | 0.010          | 20.0            | ±25.0                     | ± 50.0                    |
| Benzo(k)fluoranthene        | 0.010          | 20,0            | ±25.0                     | ± 50.0                    |
| Benzo(a)pyrene              | 0.010          | 20.0            | ±20.0                     | ± 50.0                    |
| Indeno(1,2,3-cd)pyrene      | 0.010          | 20.0            | ±25.0                     | ±50.0                     |
| Dibenzo(a,h)anthracene      | 0.010          | 20.0            | ±25.0                     | ± 50.0                    |
| Benzo(g,h,i)perylene        | 0.010          | 20.0            | ± 30.0                    | ± 50.0                    |
| 2,3,4,6-Tetrachlorophenol   | 0.040          | 20.0            | ± 20.0                    | ± 50.0                    |
| Naphthalene                 | 0.600          | 20.0            | ±25.0                     | ± 25.0                    |
| 2-Methylnaphthalene         | 0.300          | 20.0            | ± 20.0                    | ±25.0                     |
| Acenaphthylene              | 0.900          | 20.0            | ±20.0                     | ± 25.0                    |
| Acenaphthene                | 0.500          | 20.0            | ±20.0                     | ± 25.0                    |
| Fluorene                    | 0.700          | 20.0            | ± 25.0                    | ± 50.0                    |
| Phenanthrene                | 0.300          | 20.0            | ±25.0                     | ± 50.0                    |
| Anthracene                  | 0.400          | 20.0            | ±25.0                     | ± 50.0                    |
| Fluoranthene                | 0.400          | 20.0            | ±25.0                     | ± 50.0                    |
| Pyrene                      | 0.500          | 20.0            | ±30.0                     | ± 50.0                    |
| Benzo(a)anthracene          | 0.400          | 20.0            | ±25.0                     | ± 50.0                    |
| Chyrsene                    | 0.400          | 20.0            | ±25.0                     | ± 50.0                    |
| Benzo(b)fluoranthene        | 0.100          | 20.0            | ±30.0                     | ± 50.0                    |
| Benzo(k)fluoranthene        | 0.100          | 20.0            | ±30.0                     | ± 50.0                    |
| Benzo(a)pyrene              | 0.100          | 20.0            | =25.0                     | = 50.0                    |
| Indeno(1,2,3-cd)pyrene      | 0.100          | 20.0            | ±40.0                     | ± 50.0                    |
| Dibenzo(a,h)anthracene      | 0.010          | 25.0            | ±40.0                     | ± 50.0                    |
| Benzo(g,h,i)perylene        | 0.020          | 25.0            | ±40.0                     | € 50.0                    |

| Pentachlorophenol            | 0.010 | 40.0 | ±50.0 | ± 50.0 |
|------------------------------|-------|------|-------|--------|
| Deuterated Monitoring Compou | nds   |      |       |        |

| Analyte                                   | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum<br>%D <sup>1</sup> | Closing<br>Maximum<br>%D |
|-------------------------------------------|----------------|-----------------|---------------------------------------|--------------------------|
| I,4-Dioxane-d <sub>x</sub>                | 0.010          | 20.0            | ± 25.0                                | ± 50.0                   |
| Phenol-d <sub>5</sub>                     | 0.010          | 20.0            | = 25.0                                | = 25.0                   |
| Bis-(2-chloroethyl)ether-ds               | 0.100          | 20.0            | ± 20.0                                | ± 25.0                   |
| 2-Chlorophenol-d <sub>4</sub>             | 0.200          | 20.0            | ± 20.0                                | ± 25.0                   |
| 4-Methylphenol-d <sub>8</sub>             | 0.010          | 20.0            | ± 20.0                                | ±25.0                    |
| 4-Chloroaniline-d4                        | 0.010          | 40.0            | ± 40.0                                | ± 50.0                   |
| Nitrobenzene-d <sub>s</sub>               | 0.050          | 20.0            | ±20.0                                 | ±25.0                    |
| 2-Nitrophenol-d4                          | 0.050          | 20.0            | ± 20.0                                | ± 25.0                   |
| 2,4-Dichlorophenol-da                     | 0.060          | 20.0            | ± 20.0                                | ±25.0                    |
| Dimethylphthalate-d <sub>6</sub>          | 0.300          | 20.0            | = 20.0                                | ±25.0                    |
| Acenaphthylene-d <sub>8</sub>             | 0,400          | 20.0            | ± 20.0                                | ±25.0                    |
| 4-Nitrophenol-d <sub>4</sub>              | 0.010          | 40.0            | ±40.0                                 | ±50.0                    |
| Fluorene-dia                              | 0.100          | 20.0            | ±20.0                                 | ±25.0                    |
| 4,6-Dinitro-2-methylphenol-d              | 0.010          | 40.0            | ± 30.0                                | € 50.0                   |
| Anthracene-d <sub>16</sub>                | 0.300          | 20.0            | ± 20.0                                | ± 25.0                   |
| Pyrene-d <sub>10</sub>                    | 0.300          | 20.0            | =25.0                                 | ± 50.0                   |
| Benzo(a)pyrene-d <sub>12</sub>            | 0.010          | 20.0            | = 20.0                                | ± 50.0                   |
| Fluoranthene-d <sub>10</sub> (SIM)        | 0.400          | 20.0            | ±25.0                                 | ± 50.0                   |
| 2-Methylnaphthalene-d <sub>10</sub> (SIM) | 0.300          | 20.0            | ± 20.0                                | ± 25.0                   |

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

| All criteria were met |
|-----------------------|
| Criteria were not mel |
| and/or see belowX     |

# **CONTINUING CALIBRATION VERIFICATION**

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:06/20/16_(SIM)                            |
|-----------------------------------------------------------------------|
| Date of initial calibration verification (ICV):_06/21/16              |
| Date of continuing calibration verification (CCV):_06/22/16;_06/27/16 |
| _06/28/16;_06/29/16;_06/30/16;_06/30-07/01/16                         |
| Date of closing CCV:06/23/16                                          |
| Instrument ID numbers:GCMS4M                                          |
| Matrix/Level:Aqueous/low                                              |
| Date of initial calibration:06/09-10/16;_06/22/16_(Scan)              |
| Date of initial calibration verification (ICV):06/09-10/16;_06/22/16  |
| Date of continuing calibration verification (CCV):06/23/16;_06/24/16  |
| _06/27/16:_06/28/16;_06/29/16                                         |
| Date of closing CCV:                                                  |
| Instrument ID numbers: GCMSF                                          |
| Matrix/Level:Aqueous/low                                              |
| Date of initial calibration:06/14-15/16_(Scan)                        |
| Date of initial calibration verification (ICV):06/15-16/16            |
| Date of continuing calibration verification (CCV):06/29/16            |
| Date of closing CCV:                                                  |
| Instrument ID numbers:GCMSZ                                           |
| Matrix/Level:Aqueous/low                                              |
| •                                                                     |

| DATE    | LAB FILE  | CRITERIA OUT             | COMPOUND                   | SAMPLES          |  |
|---------|-----------|--------------------------|----------------------------|------------------|--|
|         | iD#       | RFs, %RSD, <u>%D</u> , r |                            | AFFECTED         |  |
| GCMSF   |           |                          |                            |                  |  |
| 6/23/16 | cc6644-25 | -20.8                    | 2-nitrophenol              | JC22206-1; -2    |  |
|         |           | -23.2                    | Hexachlorocyclopentadiene* |                  |  |
|         |           | -22.4                    | 2,4,6-trichlorophenol*     |                  |  |
|         |           | -27.6                    | 2,3,4,6-tetrachlorophenol  |                  |  |
| 6/24/16 | cc6544-50 | 22.9                     | Acetophenone               | JC22206-3        |  |
|         |           | 23.3                     | N-nitroso-di-n-propylamine |                  |  |
|         |           | 28.2                     | 4-chloroaniline*           |                  |  |
|         |           | -28.0                    | Pentachlrophenol*          |                  |  |
| 6/28/16 | cc6645-25 | -32.0                    | Atrazine*                  | JC22206-10; -11; |  |
|         |           |                          |                            | -7; -9           |  |
| 6/29/16 | cc6544-50 | 26.3                     | 4-chloroaniline*           | QC samples       |  |
|         | cc6645-25 | -26.0                    | Atrazine*                  |                  |  |
| GCMSZ   |           |                          |                            |                  |  |
| 6/29/16 | cc5571-25 | -25.0                    | 1,4-dioxane*               | JC22206-8        |  |

|         |           | 21.3                     | Hexachlorobutadiene        |           |
|---------|-----------|--------------------------|----------------------------|-----------|
| DATE    | LAB FILE  | CRITERIA OUT             | COMPOUND                   | SAMPLES   |
|         | ID#       | RFs, %RSD, <u>%D</u> , r |                            | AFFECTED  |
| GCMSZ   | -         |                          |                            |           |
| 6/29/16 | cc5571-25 | 31.6                     | Hexachiorocyclopentadiene* | JC22206-8 |
|         |           | -23.2                    | 2-nitroaniline             |           |
|         |           | 30.9                     | Pentachlorophenol*         |           |

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in this document. Analytes not meeting the continuing calibration verification method performance criteria and validation guidance document performance criteria gualified as estimated (J) or (UJ) in affected samples.

\* Analytes not meeting the continuing calibration verification method performance criteria but were within the validation guidance document performance criteria. No action taken.

No closing calibration verification included in data package. No action taken, professional judgment.

#### Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

| Criteria for Opening CCV                                                              | Criteria for Closing CCV                                                              | Ac                                        | ion                                  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|--|
| Criteria for Opening CCV                                                              | criation Opening CCV Criefia for Closing CCV                                          |                                           | Non-detect                           |  |
| CCV not performed at required frequency and sequence                                  | CCV not performed at required frequency                                               | Use<br>professional<br>judgment<br>R      | Use<br>professional<br>judgment<br>R |  |
| CCV not performed at specified concentration                                          | CCV not performed at specified concentration                                          | Use<br>professional<br>judgment           | Use<br>professional<br>judgment      |  |
| RRF < Minimum RRF in Table 2 for target analyte                                       | RRF < Minimum RRF in Table 2 for target analyte                                       | Use<br>professional<br>judgment<br>J or R | R                                    |  |
| RRF ≥ Minimum RRF in Table 2 for target analyte                                       | RRF ≥ Minimum RRF in Table 2<br>for target analyte                                    | No<br>qualification                       | No<br>qualification                  |  |
| %D outside the Opening<br>Maximum %D limits in Table 2<br>for target analyte          | %D outside the Closing Maximum<br>%D limits in Table 2 for target<br>analyte          | J                                         | ŲJ                                   |  |
| %D within the inclusive Opening<br>Maximum %D limits in Table 2<br>for target analyte | %D within the inclusive Closing<br>Maximum %D limits in Table 2<br>for target analyte | No<br>qualification                       | No<br>qualification                  |  |

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

## BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

#### Laboratory blanks

| DATE<br>ANALYZED | LAB ID                   | MATRIX           | COMPOUND               | CONCENTRATION UNITS              |
|------------------|--------------------------|------------------|------------------------|----------------------------------|
| _No_target_an    | _<br>alytes_detected_in_ | _method_bla      | inks_except_in_the_ca  | ases_described_in_this_document. |
| _06/27/16        | _OP94859A-MB1            | _Aq./low_        | 1,4-dioxane            |                                  |
| _06/28/16        | OP94859A-MB1             | _woll.pA_        | 1,4-dioxane            | 0.401_ug/l                       |
| DATE<br>ANALYZED | LAB ID                   | LEVEL/<br>MATRIX | COMPOUND               | CONCENTRATION UNITS              |
| _No_target_ana   |                          | _the_equipm      |                        | the_cases_described_in_this      |
| _06/28/16        | JC22206-11Aqı            | ueous/low        | bis(2-ethylhexyl)phtha | late2.1_ug/l                     |
|                  | T10                      |                  |                        |                                  |
|                  |                          |                  |                        |                                  |
|                  |                          |                  |                        |                                  |

**Note:** No action taken, bis(2-ethylhexyl)phthalate is a common laboratory contaminant and was detected at a concentration below the action level.

| All criteria were met |  |  |  |
|-----------------------|--|--|--|
| Criteria were not met |  |  |  |
| and/or see belowX     |  |  |  |

# BLANK ANALYSIS RESULTS (Section 3)

# **Blank Actions**

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

| Blank Type              | Blank Result                                                                                      | Sample Result             | Action                                                                    |
|-------------------------|---------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------|
|                         | Detect                                                                                            | Non-detect                | No qualification                                                          |
|                         | < CRQL                                                                                            | < CRQL                    | Report at CRQL and qualify as non-detect (U)                              |
|                         |                                                                                                   | ≥ CRQL                    | Use professional judgment                                                 |
|                         | ≥CRQL                                                                                             | < CRQL                    | Report at CRQL and qualify as non-detect (U)                              |
| Method,                 |                                                                                                   | ≥ CRQL but < Blank Result | Report at sample results and qualify as non-detect (U) or as unusable (R) |
| TCLP/SPLP<br>LEB, Field |                                                                                                   | ≥ CRQL and ≥ Blank Result | Use professional judgment                                                 |
|                         | Grossly high                                                                                      | Detect                    | Report at sample results and qualify as unusable (R)                      |
|                         | TIC > 5.0 ug/L<br>(water) or 0.0050<br>mg/L (TCLP<br>leachate)<br>or<br>TIC > 170 ug/Kg<br>(soil) | Detect                    | Use professional judgment                                                 |

# List samples qualified

| CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED<br>SAMPLES |
|----------------------------|----------|------------|----------|-----|---------------------|
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     | -                   |

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

## SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

|                                                                                         | Action           |                  |  |
|-----------------------------------------------------------------------------------------|------------------|------------------|--|
| Criteria                                                                                | Detect           | Non-detect       |  |
| %R < 10% (excluding DMCs with 10% as a lower acceptance limit)                          | J-               | R                |  |
| 10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit | Ja               | U)               |  |
| Lower Acceptance limit ≤%R ≤ Upper Acceptance Limit                                     | No qualification | No qualification |  |
| %R > Upper Acceptance Limit                                                             | J+               | No qualification |  |

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

| Matrix:Groundwater_                             |                                                        |                         |
|-------------------------------------------------|--------------------------------------------------------|-------------------------|
| SAMPLE ID                                       | SURROGATE COMPOUND                                     | ACTION                  |
| _DMCs_meet_the_requi<br>_within_laboratory_reco | ired_criteriaNon-deuterated_surrogates_addovery_limits | ed_to_the_samples_were_ |
| _JC22206-8                                      | 2-Fluorophenol6_%                                      | No_action               |
| _JC22206-8                                      | 2-Fluorophenol6_%                                      | No_action               |
| _JC22206-9                                      | None_of_the_surrogates_recovered_                      | _dueNo_action           |

Note: No action taken, professional judgment. Surrogate recovery outside control limit in sample JC22206-8 due to matrix interference, confirmed by re-extraction. None of the surrogates recovered in sample JC22206-9 due to dilution. No action taken

Table 8. Semivolatile DMCs and the Associated Target Analytes

| 1,4-Dioxane-ds (DMC-1)                    | Phenot-ds(DMC-2)                     | Bis(2-Chloroethyl) ether-d <sub>3</sub><br>(DMC-3) |
|-------------------------------------------|--------------------------------------|----------------------------------------------------|
| 1,4-Dioxane                               | Benzaldehyde                         | Bis(2-chloroethyl)ether                            |
|                                           | Phenol                               | 2,2'-Oxybis(1-chloropropane)                       |
|                                           |                                      | Bis(2-chloroethoxy)methane                         |
| 2-Chlorophenol-d4(DMC-4)                  | 4-Methylphenol-da (DMC-5)            | 4-Chloroaniline-d4 (DMC-6)                         |
| 2-Chlorophenol                            | 2-Methylphenol                       | 4-Chloroaniline                                    |
|                                           | 3-Methylphenol                       | Hexachlorocyclopentadiene                          |
|                                           | 4-Methylphenol                       | Dichlorobenzidine                                  |
|                                           | 2,4-Dimethylphenol                   |                                                    |
| Nitrobenzene-ds(DMC-7)                    | 2-Nitrophenol-d <sub>4</sub> (DMC-8) | 2,4-Dichlorophenol-d3(DMC-9)                       |
| Acetophenone                              | Isophorone                           | 2,4-Dichlorophenol                                 |
| N-Nitroso-di-n-propylamine                | 2-Nitrophenol                        | Hexachlorobutadiene                                |
| Hexachloroethane                          |                                      | Hexachlorocyclopentadiene                          |
| Nitrobenzene                              |                                      | 4-Chloro-3-methylphenol                            |
| 2,6-Dinitrotoluene                        |                                      | 2,4,6-Trichlorophenol                              |
| 2,4-Dinitrotoluene                        |                                      | 2,4,5-Trichlorophenol                              |
| N-Nitrosodiphenylamine                    |                                      | 1,2,4,5-Tetrachlorobenzene                         |
|                                           |                                      | *Pentachlorophenol                                 |
| _                                         |                                      | 2,3,4,6-Tetrachlorophenol                          |
| Dimethylphthalate-d <sub>4</sub> (DMC-10) | Acenaphthylene-ds (DMC-11)           | 4-Nitrophenol-d <sub>4</sub> (DMC-12)              |
| Caprolactam                               | *Naphthalene                         | 2-Nitroaniline                                     |
| 1,1'-Biphenyl                             | *2-Methylnaphthalene                 | 3-Nitroaniline                                     |
| Dimethylphthalate                         | 2-Chloronaphthalene                  | 2,4-Dinitrophenol                                  |
| Diethylphthalate                          | *Acenaphthylene                      | 4-Nitrophenol                                      |
| Di-n-butylphthalate                       | *Acenaphthene                        | 4-Nitroaniline                                     |
| Butylbenzylphthalate                      |                                      |                                                    |
| Bis(2-ethylhexyl) phthalate               |                                      |                                                    |
| Di-n-octylphthalate                       |                                      |                                                    |

| Fluorene-d <sub>10</sub> (DMC-13) | 4,6-Dinitro-2-methylphenol-d₂<br>(DMC-14) | Anthracene-d <sub>10</sub> (DMC-15) |
|-----------------------------------|-------------------------------------------|-------------------------------------|
| Dibenzofuran                      | 4,6-Dinitro-2-methylphenol                | Hexachlorobenzene                   |
| *Fluorene                         |                                           | Atrazine                            |
| 4-Chlorophenyl-phenylether        |                                           | *Phenanthrene                       |
| 4-Bromophenyl-phenylether         |                                           | *Anthracene                         |
| Carbazole                         |                                           |                                     |
| Pyrene-d <sub>10</sub> (DMC-16)   | Benzo(a)pyrene-d <sub>12</sub> (DMC-17)   |                                     |
| *l-fluoranthene                   | 3,3'-Dichlorobenzidine                    |                                     |
| *Pyrene                           | *Benzo(b)fluoranthene                     |                                     |
| *Benzo(a)anthracene               | *Benzo(k)fluoranthene                     |                                     |
| *Chrysene                         | *Benzo(a)pyrene                           |                                     |
|                                   | *Indeno(1,2,3-cd)pyrene                   |                                     |
|                                   | *Dibenzo(a,h)anthracene                   |                                     |
|                                   | *Benzo(g,h,i)perylene                     |                                     |

<sup>\*</sup>Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

| Fluoranthene-d10<br>(DMC-1) | 2-Methylnaphthalene-d10<br>(DMC-2) |
|-----------------------------|------------------------------------|
| Fluoranthene                | Naphthalene                        |
| Pyrene                      | 2-Methylnaphthalene                |
| Benzo(a)anthracene          | Acenaphthylene                     |
| Chrysene                    | Acenaphthene                       |
| Benzo(b)fluoranthene        | Fluorene                           |
| Benzo(k)fluoranthene        | Pentachlorophenol                  |
| Benzo(a)pyrene              | Phenanthrene                       |
| Indeno(1,2,3-ed)pyrene      | Anthracene                         |
| Dibenzo(a,h)anthracene      |                                    |
| Benzo(g,h,i)perylene        |                                    |

| All criteria were met_ |    |
|------------------------|----|
| Criteria were not met  |    |
| and/or see below       | _X |

## VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

#### MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

**NOTES:** 

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

| Sample ID:JC22206-1       | Matrix/Level:Groundwater   |
|---------------------------|----------------------------|
| Sample ID:JC22206-9       | Matrix/Level:Groundwater   |
| Sample ID:JC21973-1_(SIM) | Matrix/Level:Groundwater   |
| Sample ID:JC21973-1_(SIM) | Matrix/Level: Groundwater_ |
|                           |                            |

**Note:** MS/MSD % recoveries and RPD within laboratory control limits except for the cases described in this document.

MS/MSD % recovery for 1,4-dioxane in sample JC22206-9MS/MSD outside laboratory control limits. No action taken, analyte concentration high compared to amount spiked.

MS/MSD % recovery for 1,4-dioxane in sample JC22206-1MS/MSD (SIM) and in sample JC22206-9MS/MSD (SIM) outside laboratory control limits. No action taken, analyte concentration high compared to amount spiked.

Several analyse not meeting the RPD laboratory control limits but were within generally accepted and validation guidance document performance criteria. No qualification made on the basis of RPD.

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

## Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

#### INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal area meets the required criteria of batch samples corresponding to this data package.

#### Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
  - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
  - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
  - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
  - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

**Note:** Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

## Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

|                                                                                                     | Action           |                  |  |
|-----------------------------------------------------------------------------------------------------|------------------|------------------|--|
| Criteria                                                                                            | Detect           | Non-detect       |  |
| Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL                          | J+:              | R                |  |
| 20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL                    | J+               | UJ               |  |
| 50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL                   | No qualification | No qualification |  |
| Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL                         | J-               | No qualification |  |
| RT shift between sample/blank and opening CCV or<br>mid-point standard CS3 from ICAL > 10.0 seconds | R                | R                |  |
| RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds    | No qualification | No qualification |  |

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All criteria were metX<br>Criteria were not met<br>and/or see below                                                                                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TARGET CO    | MPOUND IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                               |
| Criteria:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |
|              | e Retention Times (RRTs) of reported compounding Continuing Calibration Verification (CCV)                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |
| List compour | nds not meeting the criteria described above:                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |
| Sample ID    | Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Actions                                                                                                                                                                                                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |
| spectrum fro | a of the sample compound and a current labor on the associated calibration standard (opening must match according to the following criteria:  All ions present in the standard mass spectrum must be present in the sample spectrum.  The relative intensities of these ions must agr sample spectra (e.g., for an ion with an abust the corresponding sample ion abundance must lons present at greater than 10% in the samp standard spectrum, must be evaluated by a interpretation. | g CCV or mid-point standard from initial arm at a relative intensity greater than 10% see within ±20% between the standard and indance of 50% in the standard spectrum, st be between 30-70%).  The ple mass spectrum, but not present in the |
| List compour | nds not meeting the criteria described above:                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |
| Sample ID    | Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Actions                                                                                                                                                                                                                                       |
| ldentified_c | compounds_meet_the_required_criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                               |

#### Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

# TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

|     |     | $\overline{}$ | ~    |
|-----|-----|---------------|------|
| 1 1 | 2   | - 1           | 11.0 |
|     | ist | - 1           | lCs  |

| Sample ID | Compound | Sample ID | Compound                                |
|-----------|----------|-----------|-----------------------------------------|
|           |          |           | :====================================== |
|           |          |           |                                         |
|           |          |           |                                         |

## Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
  - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
  - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

# SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

#### Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

| Criteria                | Ac                        | Action                    |  |  |
|-------------------------|---------------------------|---------------------------|--|--|
| Crueria                 | Detects                   | Non-detects               |  |  |
| %Solids < 10.0%         | Use professional judgment | Use professional judgment |  |  |
| 10.0% ≤ %Solids ≤ 30.0% | Use professional judgment | Use professional judgment |  |  |
| %Solids > 30,0%         | No qualification          | No qualification          |  |  |

#### SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

# QUANTITATION LIMITS

# A. Dilution performed

| SAMPLE ID  | DILUTION | REASON FOR DILUTION                 |
|------------|----------|-------------------------------------|
| JC22206-7  | 10 X     | 1,4-Dioxane over calibration range. |
| JC22206-9  | 50 X     | 1,4-Dioxane over calibration range. |
| JC22206-10 | 100 X    | 1,4-Dioxane over calibration range. |
|            |          |                                     |
|            |          |                                     |
| 0.00       |          |                                     |
| V.E.V.     |          |                                     |
|            |          |                                     |
|            |          |                                     |
|            |          |                                     |
|            |          |                                     |
|            |          |                                     |

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

## FIELD DUPLICATE PRECISION

| Sample IDs: | JC22206-4/-5 | Matrix:Groundwater |
|-------------|--------------|--------------------|
|-------------|--------------|--------------------|

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

| COMPOUND                                    | SQL<br>ug/L | SAMPLE<br>CONC. | DUPLICATE CONC.     | RPD           | ACTION                                  |
|---------------------------------------------|-------------|-----------------|---------------------|---------------|-----------------------------------------|
| bis(2-<br>ethylhexyl)phthalate              | 1.7         | 2.1             | 18.9                | 167 %         | No action, sample concentration < 5 SQL |
| Field duplicate analy detected target analy |             |                 | package. RPD within | n the require | ed criteria < 50 % for                  |
|                                             |             |                 |                     |               |                                         |

|        |                    |                                                                                                                   | All criteria were metX Criteria were not met and/or see below                                   |
|--------|--------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| OTHE   | ER ISSUES          |                                                                                                                   |                                                                                                 |
| A.     | System Perform     | nance                                                                                                             |                                                                                                 |
| List s | amples qualified b | ased on the degradation of system p                                                                               | performance during simple analysis:                                                             |
| Samp   | ole ID             | Comments                                                                                                          | Actions                                                                                         |
|        |                    |                                                                                                                   |                                                                                                 |
|        |                    |                                                                                                                   |                                                                                                 |
| Actio  | <del></del>        |                                                                                                                   |                                                                                                 |
| durin  | g sample analys    | nent to qualify the data if it is determes. Inform the Contract Laboratory performance which significantly affect | ined that system performance has degraded Program COR any action as a result of sted the data.  |
| B.     | Overall Assess     |                                                                                                                   | no dia.                                                                                         |
| List s | amples qualified t | pased on other issues:                                                                                            |                                                                                                 |
|        | ple ID             | Comments                                                                                                          | Actions                                                                                         |
| _No_   | other_issues_tha   |                                                                                                                   | _dataResults_are_valid_and_can_be_used                                                          |
| Actio  |                    |                                                                                                                   |                                                                                                 |
| 1.     | Use profession     | al judgment to determine if there is ar<br>Quality Control (QC) criteria previously                               | ny need to qualify data which were not qualified discussed.                                     |
| 2.     | Write a brief na   | arrative to give the user an indication                                                                           | of the analytical limitations of the data. Inform sistency of the data with the Sample Delivery |

context. This may be used as part of a formal Data Quality Assessment (DQA).

3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:

Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given

- The analysis with the lower CRQL
- The analysis with the better QC results
- The analysis with the higher results

#### **EXECUTIVE NARRATIVE**

SDG No:

JC22206

Laboratory:

Accutest, Florida

Analysis:

SW846-8015C

Number of Samples:

15

Location:

BMSMC, Building 5 Area

Humacao, PR

**SUMMARY:** 

Fifteen (15) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

None

Major:

None

Minor:

None

**Critical findings:** 

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Lufant

**Reviewers Name:** 

Rafael Infante

**Chemist License 1888** 

Signature:

July 19, 2016

Date:

## SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC22206-1

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016

Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|------------------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| isobutyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0                    | -        | U          | Yes        |

Sample ID: JC22206-2

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016

Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0             | •        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0             | -        | U          | Yes        |

Sample ID: JC22206-3

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016

Matrix: Groundwater

| Analyte Name      | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|------------------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| isobutyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0                    | _        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/i  | 1.0                    | -        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0                    | -        | U          | Yes        |

Sample ID: JC22206-4

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0             | •        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0             | -        | U          | Yes        |

Sample ID: JC22206-5

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0             | •        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0             | •        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0             | •        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0             | •        | U          | Yes        |

Sample ID: JC22206-6

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

| Analyte Name      | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|------------------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0                    | •        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0                    | •        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0                    | •        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0                    | -        | U          | Yes        |

Sample ID: JC22206-7

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|------------------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0                    | •        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0                    | •        | U          | Yes        |

Sample ID: JC22206-8

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0             | •        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0             | -        | U          | Yes        |

Sample ID: JC22206-9

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016 Matrix: Groundwater

| Analyte Name      | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|------------------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| isobutyi Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0                    |          | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0                    |          | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0                    |          | U          | Yes        |

Sample ID: JC22206-10

. . . .

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016 Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 100    | ug/i  | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0             | -        | U          | Yes        |

Sample ID: JC22206-11

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016

Matrix: AQ - Equipment Blank

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0             | 7.       | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0             | 1-       | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0             | 7        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0             | 12       | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0             | -        | U          | Yes        |

Sample ID: JC22206-1MS

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016 Matrix: Groundwater

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 5250   | ug/l  | 1.0             | -        | -          | Yes        |
| Isobutyl Alcohol  | 5780   | ug/l  | 1.0             |          | -          | Yes        |
| Isopropyl Alcohol | 5410   | ug/l  | 1.0             | -        | 17         | Yes        |
| n-Propyl Alcohol  | 5420   | ug/l  | 1.0             | -        | -          | Yes        |
| n-Butyl Alcohol   | 5010   | ug/l  | 1.0             | -        | 35         | Yes        |
| sec-Butyl Alcohol | 5810   | ug/l  | 1.0             | -        | -          | Yes        |
| Methanol          | 4850   | ug/l  | 1.0             | -        | 1.7        | Yes        |

Sample location: BMSMC Building 5 Area

Sampling date: 6/10/2016 Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | <b>Dilution Factor</b> | Lab Flag | <b>Validation</b> | Reportable |
|-------------------|--------|-------|------------------------|----------|-------------------|------------|
| Ethanol           | 5830   | ug/l  | 1.0                    | -        | -                 | Yes        |
| Isobutyl Alcohol  | 6000   | ug/l  | 1.0                    | -        | -                 | Yes        |
| Isopropył Alcohol | 5800   | ug/l  | 1.0                    | -        | -                 | Yes        |
| n-Propyl Alcohol  | 6010   | ug/l  | 1.0                    | -        | -                 | Yes        |
| n-Butyl Alcohol   | 5240   | ug/l  | 1.0                    | -        | -                 | Yes        |
| sec-Butyl Alcohol | 5860   | ug/l  | 1.0                    | -        | -                 | Yes        |
| Methanol          | 5380   | ug/l  | 1.0                    | -        | -                 | Yes        |

Sample ID: JC22206-9MS

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016 Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 4900   | ug/l  | 1.0             | •        | -          | Yes        |
| Isobutyl Alcohol  | 5790   | ug/l  | 1.0             | -        | -          | Yes        |
| isopropyl Alcohol | 5190   | ug/l  | 1.0             | -        | -          | Yes        |
| n-Propyl Alcohol  | 5960   | ug/l  | 1.0             | -        | •          | Yes        |
| n-Butyl Alcohol   | 5090   | ug/l  | 1.0             | -        | -          | Yes        |
| sec-Butyl Alcohol | 5780   | ug/l  | 1.0             | -        | -          | Yes        |
| Methanol          | 4150   | ug/l  | 1.0             | -        | -          | Yes        |

Sample ID: JC22206-9MSD

Sample location: BMSMC Building 5 Area

Sampling date: 6/14/2016

Matrix: Groundwater

METHOD: 8015C

| Analyte Name      | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|------------------------|----------|------------|------------|
| Ethanol           | 5600   | ug/l  | 1.0                    | -        | •          | Yes        |
| Isobutyl Alcohol  | 5830   | ug/l  | 1.0                    | -        | -          | Yes        |
| Isopropyl Alcohol | 5650   | ug/l  | 1.0                    | -        | -          | Yes        |
| n-Propyl Alcohol  | 5680   | ug/l  | 1.0                    | •        | -          | Yes        |
| n-Butyl Alcohol   | 5100   | ug/l  | 1.0                    | -        | -          | Yes        |
| sec-Butyl Alcohol | 5830   | ug/l  | 1.0                    | -        | -          | Yes        |
| Methanol          | 4840   | ug/l  | 1.0                    | _        | -          | Yes        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Number:JC22206                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:06/10-14/2016                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shipping Date:06/14/2016                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA Region: 2                                                                                                                                                                                                                                                                              |
| REVIEW OF VOLATILE The following guidelines for evaluating volatile organics we document will assist the reviewer in using professional just the needs of the data users. The sample result guidance documents in the following order of precedency of the process of | ORGANIC PACKAGE ere created to delineate required validation actions. This adgment to make more informed decision and in better s were assessed according to USEPA data validation dence: "Test Methods for Evaluating Solid Waste, cember 1996)," specifically for Methods 8000/8015C are |
| The hardcopied (laboratory name) _Accutest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | data nackana received has been reviewed                                                                                                                                                                                                                                                    |
| and the quality control and performance data summarized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                            |
| ind the quality control and performance data summarized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THE MIDDING GAZATOVICA TO A COST MIDIAGOS.                                                                                                                                                                                                                                                 |
| .ab. Project/SDG No.:JC22206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample matrix: Groundwater                                                                                                                                                                                                                                                                 |
| No. of Samples:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>_</del>                                                                                                                                                                                                                                                                               |
| Trip blank No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |
| Equipment blank No.: IC22206 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |
| ield duplicate No.:JC22206-4/JC22206-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                          |
| X Data Completeness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X Laboratory Control Spikes                                                                                                                                                                                                                                                                |
| X Holding Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X Field Duplicates                                                                                                                                                                                                                                                                         |
| N/A_GC/MS Tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X Calibrations                                                                                                                                                                                                                                                                             |
| N/A_Internal Standard Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X Compound Identifications                                                                                                                                                                                                                                                                 |
| X Blanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X Compound Quantitation                                                                                                                                                                                                                                                                    |
| X Surrogate Recoveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X Quantitation Limits                                                                                                                                                                                                                                                                      |
| X Matrix Spike/Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |
| Overall Comments:_Low_molecular_weight_al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cohols_by_SW-846_8015C                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |
| Definition of Qualifiers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |
| - Estimated results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |
| J- Compound not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                            |
| R- Rejected data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                            |
| JJ- Estimated nondetect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                            |
| Reviewer:   Mark Arfanix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                   |
| Date: July 19, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |

# **DATA COMPLETENESS**

| MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED |
|---------------------|---------------------|---------------|
|                     |                     |               |
|                     |                     |               |
|                     | <u> </u>            |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     | <u></u>             |               |
|                     |                     | <u> </u>      |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     | 58                  |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |

| All criteria were met) | _ |
|------------------------|---|
| Criteria were not met  |   |
| and/or see below       |   |

#### **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID                   | DATE SAMPLED        | DATE ANALYZED          | pH        | ACTION            |         |
|-----------------------------|---------------------|------------------------|-----------|-------------------|---------|
| All samples anal preserved. | yzed within the red | <br>commended method h | olding ti | me. All samples p | roperly |
|                             |                     |                        |           |                   |         |
|                             |                     |                        |           |                   |         |
|                             |                     |                        |           |                   |         |

## Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH  $\leq$  2, 4 $^{\circ}$ C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4 $^{\circ}$ C, no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 5.2°C

#### Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

| All criteria were metN/A        |
|---------------------------------|
| Criteria were not met see below |

# GC/MS TUNING

| The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits |
|----------------------------------------------------------------------------------------------------------------------------|
| N/A_ The BFB performance results were reviewed and found to be within the specified criteria.                              |
| N/A_ BFB tuning was performed for every 12 hours of sample analysis.                                                       |
| If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.       |
| List the samples affected:                                                                                                 |
| If mass calibration is in error, all associated data are rejected.                                                         |

| All criteria were met _ | Χ_ |  |
|-------------------------|----|--|
| Criteria were not met   |    |  |
| and/or see below        | _  |  |

#### CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

|      | Date<br>Date | es of continuing calibrates of final calibration ve | tion:05/17/16<br>erification:06/16/16 | (initial);_06/16/16;_06/20/16<br>;_06/20/16 |
|------|--------------|-----------------------------------------------------|---------------------------------------|---------------------------------------------|
|      |              | rument ID number:<br>rix/Level:                     |                                       |                                             |
| DATE | LAB FILE ID# | CRITERIA OUT<br>RFs, %RSD, %D, r                    | COMPOUND                              | SAMPLES<br>AFFECTED                         |
|      |              |                                                     |                                       |                                             |

**Note:** Initial, continuing, and final calibration verifications meets method specific criteria in the two columns.

#### Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of  $\geq$  0.995 has therefore been utilized as professional judgment.

#### **Actions**

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

| All criteria were mel _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

# V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

| DATE<br>ANALYZED       | LAB ID | LEVEL/<br>MATRIX | COMPOUND     | CONCENTRATION UNITS             |
|------------------------|--------|------------------|--------------|---------------------------------|
| 10:27:17 170           | 300    |                  | fic_criteria |                                 |
| Field/ <u>Equipmen</u> | -      |                  |              |                                 |
| DATE<br>ANALYZED       | LAB ID | LEVEL!<br>MATRIX | COMPOUND     | CONCENTRATION UNITS             |
| _package               |        |                  |              | o_blanks_included_in_this_data_ |
|                        |        |                  |              |                                 |
|                        |        |                  |              |                                 |
|                        |        |                  |              | 1 - 4/3/4/2                     |

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

# VB. BLANK ANALYSIS RESULTS (Section 3)

#### Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and  $\le$  AL, report the compound as not detected (U) at the SQL.

If the concentration is  $\geq$  SQL but  $\leq$  AL, report the compound as not detected (U) at the reported concentration.

If the concentration is  $\geq$  SQL and > AL, report the concentration unqualified.

#### Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

| CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED<br>SAMPLES |
|----------------------------|----------|------------|----------|-----|---------------------|
|                            |          | :          |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            | <u> </u> |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            | \$V/-    |            |          |     |                     |
|                            |          |            |          |     |                     |

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

### SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

| SAMPLE ID                        |                                             | SURROGATE COMPOUND |              |                                  | ACTION |          |
|----------------------------------|---------------------------------------------|--------------------|--------------|----------------------------------|--------|----------|
|                                  | Hexanol                                     | <b>DBFM</b>        | TOL-d8       | BFB                              |        |          |
| _All_surrogat                    | e_recoveries_withi                          | n_laboratory_co    | ntrol_limits |                                  |        | <u> </u> |
|                                  |                                             |                    |              | \$74.0× ([0                      |        |          |
|                                  | 32 43-27                                    |                    |              |                                  |        |          |
|                                  |                                             |                    |              |                                  |        |          |
| QC Limits* (ALL_to QC Limits* (S | _UL56_to_                                   | 145to              | to           | to                               |        |          |
|                                  | _ULto_                                      | to_                | to           | to                               | _      |          |
| QC Limits* (S                    | solid-Med)<br>_UL to_                       | to                 | to           |                                  | -      |          |
|                                  | 2-Dichloromethane<br>omofluoromethane       | ·d4                |              | = Toluene-d8<br>Bromofluorobenze | ne     |          |
|                                  | mits are laboratory<br>limits are not avail |                    |              |                                  |        | solid    |
| samples.                         |                                             |                    |              |                                  |        |          |
| Actions:                         |                                             |                    |              |                                  |        |          |
| QUA                              | LITY                                        | %R < 10%           | %R = 1       | 0% - LL %R >                     | · UL   |          |
|                                  | tive results                                | J                  | J            | J                                |        |          |
| None                             | detects results                             | R                  | UJ           | Acce                             | pt     |          |

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

## VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

### 1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

|              | 22206-1MS/-MSD<br>22206-9MS/-MSD |            |          |                   | Groundwater/low<br>Groundwater/low |   |
|--------------|----------------------------------|------------|----------|-------------------|------------------------------------|---|
| MS OR MSD    | COMPOUND                         | % R        | RPD      | QC LIMITS         | ACTION                             |   |
| _MS/MSD_%_re | ecoveries_and_RPD_               | within_lab | oratory_ | control_limits    |                                    |   |
| /A13/8 =     |                                  |            |          |                   |                                    |   |
|              |                                  |            |          |                   |                                    |   |
|              |                                  |            |          | 1 PE 2/RE 10 80 P |                                    | _ |
|              |                                  |            |          |                   |                                    | _ |

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

## Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

| All criteria were met _X_ |  |
|---------------------------|--|
| Criteria were not met     |  |
| and/or see below          |  |

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

## VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

| Sample ID: | -               |          | Matrix/Le | vel/Unit: |        |
|------------|-----------------|----------|-----------|-----------|--------|
| COMPOUND   | SAMPLE<br>CONC. | MS CONC. | MSD CONC. | % RSD     | ACTION |
|            |                 |          |           |           |        |
|            |                 |          |           | 37.       |        |
|            |                 |          |           |           |        |

#### Actions:

A separate worksheet should be used for each MS/MSD pair.

<sup>\*</sup> If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

<sup>\*</sup> If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

| All criteria were met _ | _X |  |
|-------------------------|----|--|
| Criteria were not met   |    |  |
| and/or see below        |    |  |

# VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

|           | LCS ID         | COMPOUND              | % R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QC LIMIT |  |
|-----------|----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Recoverie | s_within_labor | ratory_control_limits |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |  |
|           |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |  |
|           |                |                       | # 100 No. 100 |          |  |

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

#### Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

# 2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

|     |                                      | All criteria were metX<br>Criteria were not met<br>and/or see below |
|-----|--------------------------------------|---------------------------------------------------------------------|
| IX. | FIELD/LABORATORY DUPLICATE PRECISION |                                                                     |
|     | Sample IDs:JC22206-4/JC22206-5       | Matrix:Groundwater                                                  |

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD  $\pm$  30% for aqueous samples, RPD  $\pm$  50 % for solid samples. If both samples and

duplicate are <5 SQL, the RPD criteria is doubled.

| COMPOUND                                                                                         | SQL | SAMPLE CONC.                            | DUPLICATE CONC.          | RPD      | ACTION |  |  |  |
|--------------------------------------------------------------------------------------------------|-----|-----------------------------------------|--------------------------|----------|--------|--|--|--|
|                                                                                                  |     | - 1 - 11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | DDD ::: 1.1              | <u> </u> |        |  |  |  |
| Field duplicate analyzed with this data package. RPD within laboratory, generally acceptable and |     |                                         |                          |          |        |  |  |  |
|                                                                                                  |     |                                         |                          |          |        |  |  |  |
|                                                                                                  |     |                                         | performance criteria cor |          |        |  |  |  |
|                                                                                                  |     |                                         |                          |          |        |  |  |  |

#### Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

| All criteria were metN/A |  |
|--------------------------|--|
| Criteria were not met    |  |
| and/or see below         |  |

## X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- \* Area of +100% or -50% of the IS area in the associated calibration standard.
- \* Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

| DATE         | SAMPLE ID | IS OUT | IS AREA | ACCEPTABLE<br>RANGE | ACTION |
|--------------|-----------|--------|---------|---------------------|--------|
| - 2700 - 100 |           |        |         |                     |        |
|              |           |        |         |                     |        |
|              |           |        |         |                     |        |
|              |           |        |         |                     |        |
|              |           |        |         |                     |        |
|              |           |        |         |                     |        |

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

| QUALITY             | IS AREA < -25% | IS AREA = -25 % | IS AREA > + 100% |
|---------------------|----------------|-----------------|------------------|
|                     |                | TO - 50%        |                  |
| Positive results    | J              | J               | J                |
| Nondetected results | R              | UJ              | ACCEPT           |

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met \_\_X\_\_ Criteria were not met and/or see below \_\_\_\_

# XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC22206-1MS

Tert-butyl-alcohol

RF = 28.33

[] = (173195)/(28.33)

= 6,113 ppm OK

| All criteria were met | ζ |
|-----------------------|---|
| Criteria were not met |   |
| and/or see below      | _ |

| XII. | $\Omega$ | IAN | TIT  | ΔΤΙ        | ΩN.  | 1 IN | AITS |
|------|----------|-----|------|------------|------|------|------|
| AII. | wı       | ᄱ   | 1111 | $\sim$ 1.1 | VIV. | LIB  | лнс  |

# A. Dilution performed

| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DILUTION FACTOR | REASON FOR DILUTION |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
| 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | - P                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |
| And the second s |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |

| B. | Percent Solids                        |      |   |
|----|---------------------------------------|------|---|
|    | List samples which have ≤ 50 % solids |      |   |
|    |                                       | -010 |   |
|    |                                       |      | _ |

# Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)

#### **EXECUTIVE NARRATIVE**

SDG No:

JC22206

Laboratory:

**Accutest, New Jersey** 

Analysis:

SW846-8081B

**Number of Samples:** 

10

Location:

BMSMC, Building 5 Area

Humacao, PR

**SUMMARY:** 

Ten (10) samples were analyzed for selected pesticides following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision 0, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings: Major findings:

None None

Minor findings:

1. Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in at least one of the two columns. Final calibration verification not included in data package. No action

taken, professional judgment.

2. Surrogate recoveries within laboratory control limits in the two columns except in sample JC22206-8. Sample re-analyzed and surrogate recoveries within laboratory control limits. No action taken.

COMMENTS:

Results are valid and can be used for decision making purposes.

fact refaut

Reviewers Name:

Rafael Infante

**Chemist License 1888** 

Signature:

Date:

July 19, 2016

## SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC22206-6

Sample location: BMSMC Building 5 Area

Sampling date: 13-Jun-16

Matrix: Groundwater

| Analyte Name        | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------|--------|-------|-----------------|----------|------------|------------|
| Aldrin              | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| alpha-BHC           | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| beta-BHC            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| delta-BHC           | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| gamma-BHC (Lindane) | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| alpha-Chlordane     | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| gamma-Chlordane     | 0.011  | ug/l  | 1               | -        | Ü          | Yes        |
| Dieldrin            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDD            | 0.011  | ug/l  | 1               | -        | υ          | Yes        |
| 4,4'-DDE            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDT            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin              | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan sulfate  | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin aldehyde     | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin ketone       | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-I        | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-ii       | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor          | 0.011  | ug/l  | 1               | •        | U          | Yes        |
| Heptachlor epoxide  | 0.011  | ug/l  | 1               | •        | U          | Yes        |
| Methoxychlor        | 0.022  | ug/l  | 1               | -        | U          | Yes        |
| Toxaphene           | 0.27   | ug/l  | 1               | -        | U          | Yes        |
|                     |        |       |                 |          |            |            |

Sample location: BMSMC Building 5 Area

Sampling date: 13-Jun-16 Matrix: Groundwater

| Analyte Name        | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------|--------|-------|-----------------|----------|------------|------------|
| Aldrin              | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| alpha-BHC           | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| beta-BHC            | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| delta-BHC           | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| gamma-BHC (Lindane) | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| alpha-Chlordane     | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| gamma-Chlordane     | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| Dieldrin            | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDD            | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDE            | 0.010  | ug/l  | 1               | _        | U          | Yes        |
| 4,4'-DDT            | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| Endrin              | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan sulfate  | 0.010  | ug/l  | 1               | -        | υ          | Yes        |
| Endrin aldehyde     | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| Endrin ketone       | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-I        | 0.010  | ug/l  | 1               | •        | U          | Yes        |
| Endosulfan-II       | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor          | 0.010  | ug/l  | 1               | *:       | U          | Yes        |
| Heptachlor epoxide  | 0.010  | ug/l  | 1               | -        | U          | Yes        |
| Methoxychlor        | 0.020  | ug/l  | 1               | -        | U          | Yes        |
| Toxaphene           | 0.26   | ug/l  | 1               | -        | U          | Yes        |

Sample location: BMSMC Building 5 Area

Sampling date: 13-Jun-16 Matrix: Groundwater

| Result | Units                                                                                                                                     | Dilution Factor                                                                                                                                                                                                                                              | Lab Flag                                                                                                                                                                                                                                                                                                                                                                    | Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reportable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | บ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | o U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.010  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.021  | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.26   | ug/l                                                                                                                                      | 1                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | 0.010 ug/l | 0.010 ug/l 1 | 0.010 ug/l 1 - | 0.010       ug/l       1       -       U         0.010 |

Sample location: BMSMC Building 5 Area

Sampling date: 13-Jun-16 Matrix: Groundwater

| Analyte Name        | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------|--------|-------|-----------------|----------|------------|------------|
| Aldrin              | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| alpha-BHC           | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| beta-BHC            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| delta-BHC           | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| gamma-BHC (Lindane) | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| alpha-Chlordane     | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| gamma-Chlordane     | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Dieldrin            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDD            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDE            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDT            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin              | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan sulfate  | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin aldehyde     | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin ketone       | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-I        | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-II       | 0.011  | ug/l  | 1               | •        | U          | Yes        |
| Heptachlor          | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor epoxide  | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Methoxychlor        | 0.022  | ug/l  | 1               | -        | U          | Yes        |
| Toxaphene           | 0.27   | ug/l  | 1               | -        | U          | Yes        |
| oxabueue            | 0.27   | ug/l  | 1               | -        | L          | J          |

Sample location: BMSMC Building 5 Area

Sampling date: 13-Jun-16 Matrix: Groundwater

| Analyte Name        | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------|--------|-------|-----------------|----------|------------|------------|
| Aldrin              | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| alpha-BHC           | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| beta-BHC            | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| delta-BHC           | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| gamma-BHC (Lindane) | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| alpha-Chlordane     | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| gamma-Chlordane     | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Dieldrin            | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDD            | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDE            | 0.052  | ug/l  | 1               | -        | υ          | Yes        |
| 4,4'-DDT            | 0.052  | ug/l  | 1               | -        | IJ         | Yes        |
| Endrin              | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan sulfate  | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Endrin aldehyde     | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Endrin ketone       | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-I        | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-II       | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor          | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor epoxide  | 0.052  | ug/l  | 1               | -        | U          | Yes        |
| Methoxychlor        | 0.10   | ug/l  | 1               | •        | U          | Yes        |
| Toxaphene           | 1.3    | ug/l  | 1               | _        | U          | Yes        |

Sample location: BMSMC Building 5 Area

Sampling date: 14-Jun-16 Matrix: Groundwater

| Analyte Name        |    | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------|----|--------|-------|-----------------|----------|------------|------------|
| Aldrin              |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| alpha-BHC           |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| beta-BHC            |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| delta-BHC           |    | 0.011  | ug/l  | 1               | •        | U          | Yes        |
| gamma-BHC (Lindane) |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| alpha-Chlordane     |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| gamma-Chlordane     |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Dieldrin            |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDD            |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDE            |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDT            |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin              |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan sulfate  |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin aldehyde     |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin ketone       |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-l        |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-II       |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor          |    | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor epoxide  |    | 0.011  | ug/l  | 1               | -        | Ų          | Yes        |
| Methoxychlor        |    | 0.022  | ug/l  | 1               | -        | U          | Yes        |
| Toxaphene           | 54 | 0.27   | ug/l  | 1               | -        | U          | Yes        |

Sample location: BMSMC Building 5 Area

Sampling date: 14-Jun-16 Matrix: Groundwater

| WIETHOU             | J. 0001D |       |                 |          |            |            |
|---------------------|----------|-------|-----------------|----------|------------|------------|
| Analyte Name        | Result   | Units | Dilution Factor | Lab Flag | Validation | Reportable |
| Aldrin              | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| alpha-BHC           | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| beta-BHC            | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| delta-BHC           | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| gamma-BHC (Lindane) | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| alpha-Chlordane     | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| gamma-Chlordane     | 0.010    | ug/l  | 1               | -        | υ          | Yes        |
| Dieldrin            | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDD            | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDE            | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDT            | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| Endrin              | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan sulfate  | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| Endrin aldehyde     | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| Endrin ketone       | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-l        | 0.010    | ug/l  | 1               | -        | υ          | Yes        |
| Endosulfan-II       | 0.010    | ug/l  | 1               | _        | U          | Yes        |
| Heptachlor          | 0.010    | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor epoxide  | 0.010    | ug/l  | 1               | 2        | U          | Yes        |
| Methoxychlor        | 0.020    | ug/l  | 1               |          | U          | Yes        |
| Toxaphene           | 0.26     | ug/l  | 1               | 2        | U          | Yes        |
|                     |          |       |                 |          |            |            |

Sample location: BMSMC Building 5 Area

Sampling date: 14-Jun-16

Matrix: AQ - Equipment Blank

| Analyte Name        | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------|--------|-------|-----------------|----------|------------|------------|
| Aldrin              | 0.011  | ug/l  | 1               | -        | υ          | Yes        |
| alpha-BHC           | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| beta-BHC            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| delta-BHC           | 0.011  | ug/l  | 1               | •        | U          | Yes        |
| gamma-BHC (Lindane) | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| alpha-Chlordane     | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| gamma-Chlordane     | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Dieldrin            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDD            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDE            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| 4,4'-DDT            | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin              | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan sulfate  | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin aldehyde     | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endrin ketone       | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-l        | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Endosulfan-II       | 0.011  | ug/l  | 1               | 19       | U          | Yes        |
| Heptachlor          | 0.011  | ug/l  | 1               | -        | U          | Yes        |
| Heptachlor epoxide  | 0.011  | ug/l  | 1               | -        | บ          | Yes        |
| Methoxychlor        | 0.022  | ug/l  | 1               | -        | U          | Yes        |
| Toxaphene           | 0.27   | ug/l  | 1               | -        | U          | Yes        |
|                     |        |       |                 |          |            |            |

Sample location: BMSMC Building 5 Area

Sampling date: 14-Jun-16 Matrix: Groundwater

| Analyte Name        | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|---------------------|--------|-------|-----------------|----------|------------|------------|
| Aldrin              | 0.25   | ug/l  | 1               | -        | -          | Yes        |
| alpha-BHC           | 0.26   | ug/l  | 1               | -        | -          | Yes        |
| beta-BHC            | 0.22   | ug/l  | 1               | -        | -          | Yes        |
| delta-BHC           | 0.26   | ug/l  | 1               | -        | -          | Yes        |
| gamma-BHC (Lindane) | 0.27   | ug/l  | 1               | •        | -          | Yes        |
| alpha-Chiordane     | 0.27   | ug/l  | 1               | -        | •          | Yes        |
| gamma-Chlordane     | 0.24   | ug/l  | 1               | -        | •          | Yes        |
| Dieldrin            | 0.26   | ug/l  | 1               | -        | -          | Yes        |
| 4,4'-DDD            | 0.25   | ug/l  | 1               | -        | -          | Yes        |
| 4,4'-DDE            | 0.27   | ug/l  | 1               | -        | -          | Yes        |
| 4,4'-DDT            | 0.26   | ug/l  | 1               | -        | -          | Yes        |
| Endrin              | 0.28   | ug/l  | 1               | -        | -          | Yes        |
| Endosulfan sulfate  | 0.30   | ug/l  | 1               | -        | -          | Yes        |
| Endrin aldehyde     | 0.23   | ug/l  | 1               | -        | -          | Yes        |
| Endrin ketone       | 0.30   | ug/l  | 1               | -        | -          | Yes        |
| Endosulfan-I        | 0.24   | ug/l  | 1               |          | -          | Yes        |
| Endosulfan-II       | 0.26   | ug/l  | 1               |          | -          | Yes        |
| Heptachlor          | 0.25   | ug/l  | 1               |          | -          | Yes        |
| Heptachlor epoxide  | 0.26   | ug/l  | 1               |          | -          | Yes        |
| Methoxychlor        | 0.27   | ug/l  | 1               | -        | -          | Yes        |
| Toxaphene           | ND     |       |                 |          |            |            |
|                     |        |       |                 |          |            |            |

Sample location: BMSMC Building 5 Area

Sampling date: 14-Jun-16 Matrix: Groundwater

| *************************************** |        |       |                 |          |            |            |
|-----------------------------------------|--------|-------|-----------------|----------|------------|------------|
| Analyte Name                            | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
| Aldrin                                  | 0.21   | ug/l  | 1               | -        | -          | Yes        |
| alpha-BHC                               | 0.22   | ug/l  | 1               | -        | -          | Yes        |
| beta-BHC                                | 0.20   | ug/l  | 1               | -        | -          | Yes        |
| delta-BHC                               | 0.23   | ug/l  | 1               | -        | -          | Yes        |
| gamma-BHC (Lindane)                     | 0.23   | ug/l  | 1               | -        | -          | Yes        |
| alpha-Chlordane                         | 0.24   | ug/l  | 1               | -        | •          | Yes        |
| gamma-Chlordane                         | 0.22   | ug/l  | 1               | -        | -          | Yes        |
| Dieldrin                                | 0.23   | ug/l  | 1               | -        | -          | Yes        |
| 4,4'-DDD                                | 0.21   | ug/l  | 1               | -        | -          | Yes        |
| 4,4'-DDE                                | 0.23   | ug/l  | 1               | -        | -          | Yes        |
| 4,4'-DDT                                | 0.22   | ug/l  | 1               | -        | -          | Yes        |
| Endrin                                  | 0.24   | ug/l  | 1               | -        | -          | Yes        |
| Endosulfan sulfate                      | 0.26   | ug/l  | 1               | -        | -          | Yes        |
| Endrin aldehyde                         | 0.21   | ug/l  | 1               | -        | -          | Yes        |
| Endrin ketone                           | 0.26   | ug/l  | 1               | -        | -          | Yes        |
| Endosulfan-l                            | 0.21   | ug/l  | 1               | -        | -          | Yes        |
| Endosulfan-II                           | 0.23   | ug/l  | 1               | -        | -          | Yes        |
| Heptachlor                              | 0.21   | ug/l  | 1               |          | -          | Yes        |
| Heptachlor epoxide                      | 0.23   | ug/l  | 1               |          | -          | Yes        |
| Methoxychlor                            | 0.24   | ug/l  | 1               | -        | -          | Yes        |
| Toxaphene                               | ND     |       |                 |          |            |            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project/Case Number:JC22206                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampling Date:June_10-14,_2016                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shipping Date:June_14,_2016                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA Region No.:22                                                                                                                                                                  |
| REVIEW OF PESTICIDE ORGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANIC PACKAGE                                                                                                                                                                       |
| The following guidelines for evaluating volatile required validation actions. This document will ass judgment to make more informed decision and in users. The sample results were assessed according documents in the following order of precedence Hat HW-36A, Revision 0, June, 2015. SOM02.2. Pesticide data validation actions listed on the data review guidance document, unless otherwise noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ist the reviewer in using professional better serving the needs of the data good to USEPA data validation guidance transport Section SOP Note Data Validation. The QC criteria and |
| The hardcopied (laboratory name) _Accutest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | data package received has beer rized. The data review for VOCs included:                                                                                                           |
| Lab. Project/SDG No.:JC22206<br>No. of Samples:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample matrix:Groundwater                                                                                                                                                          |
| Trip blank No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |
| The state of the s | X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits                                                  |
| Overall Comments:TCL_pesticides_list_by_SW846-808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1B                                                                                                                                                                                |
| Definition of Qualifiers:  J- Estimated results  U- Compound not detected  R- Rejected data  UJ- Estimated nordetect  Reviewer:  Date:July_19,_2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |

# **DATA COMPLETENESS**

| MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED |
|---------------------|---------------------|---------------|
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
| 2                   |                     |               |
|                     | (X                  |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     | (i)                 |               |

| All criteria were met | X   |
|-----------------------|-----|
| Criteria were not met | 000 |
| and/or see below      | _   |

#### **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID        | DATE<br>SAMPLED | DATE EXTRACTED/ANALYZED | ACTION                                |
|------------------|-----------------|-------------------------|---------------------------------------|
| Samples properly | preserved.      |                         | · · · · · · · · · · · · · · · · · · · |
|                  |                 |                         |                                       |
|                  |                 |                         |                                       |
|                  |                 |                         |                                       |
|                  |                 |                         |                                       |
|                  |                 |                         |                                       |

| Preservatives: | _All_samples_ | _extracted_and | d_analyzed_ | _within_tl | he_required_ | criteria |  |
|----------------|---------------|----------------|-------------|------------|--------------|----------|--|
|                |               |                |             |            |              |          |  |

## Criteria

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 5.2°C - OK

#### Actions

# Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ( $T = 4^{\circ}C \pm 2^{\circ}C$ ), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T =  $4^{\circ}$ C  $\pm$   $2^{\circ}$ C), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

# Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T =  $4^{\circ}$ C  $\pm$   $2^{\circ}$ C), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T =  $4^{\circ}$ C  $\pm$   $2^{\circ}$ C), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

| All criteria were met           |  |
|---------------------------------|--|
| Criteria were not met see below |  |

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

#### 1. Resolution Check Mixture

#### Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note:

If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

#### Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

# 2. Performance Evaluation Mixture (PEM) Resolution Criteria

#### Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

#### Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

#### Criteria

Is PEM % Resolution < 90%?

Yes? or No?

#### Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

|          | All criteria were metX_ |  |
|----------|-------------------------|--|
| Criteria | were not met see below  |  |

## 3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

#### 4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

|          | All criteria were met  | _X |
|----------|------------------------|----|
| Criteria | were not met see below | w  |

# 5. Mid-point Individual Standard Mixture Resolution -

## Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

#### Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

#### Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)? Yes? or No?

#### Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

## CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:               | 06/10/16           |
|--------------------------------------------|--------------------|
| Dates of initial calibration verification: | 06/10/16           |
| Dates of continuing calibration:           | 06/27/16;_06/28/16 |
| Dates of final calibration                 | -                  |
| Instrument ID numbers:                     | GC6G               |
| Matrix/Level:                              | Aqueous/low        |

| DATE                                                                                                                                                                                                                                                                                                         | LAB<br>ID# | FILE | CRITERIA OUT<br>RFs, %RSD, %D, r | COMPOUND | SAMPLES AFFECTED |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----------------------------------|----------|------------------|
|                                                                                                                                                                                                                                                                                                              |            |      |                                  |          |                  |
| Initial and initial calibration verification within the guidance document performance criteria.  Continuing calibration % differences meet the performance criteria in at least one of the two columns. Final calibration verification not included in data package. No action taken, professional judgment. |            |      |                                  |          |                  |
|                                                                                                                                                                                                                                                                                                              |            |      |                                  |          |                  |

## Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

## Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

### Criteria

Are RT Windows calculated correctly?

Yes? or No?

| All criteria were met | X   |
|-----------------------|-----|
| Criteria were not met |     |
| and/or see below      | _33 |

#### Action

Recalculate the windows and use the corrected values for all evaluations.

#### Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

#### Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

## **Continuing Calibration Checks**

#### Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

#### Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

#### Action

a. Qualify associated detects as estimated (U) and non-detects as estimated (UJ).

#### Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

#### Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

#### Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

#### Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

## Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

#### Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

#### Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

## Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not gualified

## Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

## Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

# A separate worksheet should be filled for each initial curve

All criteria were met \_\_X\_\_ Criteria were not met and/or see below \_\_\_\_\_

# BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

| List the contami       | ination in the bla | anks below. Hig  | h and low levels blanks | must be treated separately. |
|------------------------|--------------------|------------------|-------------------------|-----------------------------|
| CRQL concentr          | ationN             | /A               |                         | _                           |
| Laboratory blan        | ks                 |                  |                         |                             |
| DATE<br>ANALYZED       | LAB ID             | LEVEL/<br>MATRIX | COMPOUND                | CONCENTRATION UNITS         |
|                        |                    |                  | Carlos Anna             | nit_of_0.01_and_0.25_ug/L_  |
|                        |                    |                  |                         |                             |
| Field/ <u>Equipmen</u> |                    |                  |                         |                             |
| DATE<br>ANALYZED       | LAB ID             | LEVEL/<br>MATRIX | COMPOUND                | CONCENTRATION UNITS         |
| _data_package          |                    |                  |                         | o_blanks_analyzed_with_this |
|                        |                    |                  |                         |                             |
|                        |                    |                  |                         |                             |
|                        |                    |                  |                         |                             |
|                        |                    |                  |                         |                             |

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

# BLANK ANALYSIS RESULTS (Section 3)

#### Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10  $\mu$ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

# **Blank Actions for Pesticide Analyses**

| Blank Type                                  | Blank Result        | Sample Result                    | Action for Samples                                   |
|---------------------------------------------|---------------------|----------------------------------|------------------------------------------------------|
|                                             | Detects             | Not detected                     | No qualification required                            |
|                                             | < CRQL              | < CRQL                           | Report CRQL value with a U                           |
|                                             |                     | ≥ CRQL                           | No qualification required                            |
| Method, Sulfur                              |                     | < CRQL                           | Report CRQL value with a U                           |
| Cleanup,<br>Instrument, Field,<br>TCLP/SPLP | > CRQL              | ≥ CRQL and ≤ blank concentration | Report blank value for sample concentration with a U |
|                                             |                     | ≥ CRQL and > blank concentration | No qualification required                            |
|                                             | = CRQL              | ≤CRQL                            | Report CRQL value with a U                           |
|                                             |                     | > CRQL                           | No qualification required                            |
|                                             | Gross contamination | Detects                          | Report blank value for sample concentration with a U |

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

# BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10  $\mu$ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

**Blank Actions for Pesticide Analyses** 

| All criteria were met _ | _X |  |
|-------------------------|----|--|
| Criteria were not met   |    |  |
| and/or see below        | _  |  |

| CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS   | AL/UNITS | SQL | AFFECTED SAMPLES |
|----------------------------|----------|--------------|----------|-----|------------------|
|                            |          |              |          |     |                  |
|                            |          |              |          |     |                  |
|                            |          | <del> </del> |          |     |                  |
|                            |          |              |          |     |                  |
|                            |          |              |          |     |                  |
|                            |          |              |          |     |                  |
|                            |          |              |          |     |                  |

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

## SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

| Matrix:_Aqueou                                                                    | JS        |       |         |           |                                |
|-----------------------------------------------------------------------------------|-----------|-------|---------|-----------|--------------------------------|
| Lab                                                                               | Lab       |       |         |           |                                |
| Sample ID                                                                         | File ID   | S1 a  | S1 b    | S2 a      | S2 b                           |
| JC22206-4                                                                         | 6G36621.D | 102   | 96      | 85        | 87                             |
| JC22206-5                                                                         | 6G36622.D | 93    | 85      | 76        | 76                             |
| JC22206-6                                                                         | 6G36623.D | 105   | 103     | 91        | 98                             |
| JC22206-7                                                                         | 6G36624.D | 114   | 110     | 107       | 110                            |
| JC22206-8                                                                         | 6G36670.D | 44    | 82      | 31        | 49                             |
| JC22206-8                                                                         | 6G36625.D | 13* c | 39      | 8* c      | 28                             |
| JC22206-9                                                                         | 6G36626.D | 63    | 61      | 41        | 42                             |
| JC22206-10                                                                        | 6G36629.D | 94    | 89      | 59        | 60                             |
| JC22206-11                                                                        | 6G36630.D | 106   | 106     | 68        | 75                             |
| OP94861-BS1                                                                       | 6G36620.D | 91    | 92      | 91        | 99                             |
| OP94861-MB1                                                                       | 6G36619.D | 97    | 93      | 90        | 96                             |
| OP94861-MS                                                                        | 6G36627.D | 105   | 104     | 88        | 90                             |
| OP94861-MSD                                                                       | 6G36628.D | 88    | 86      | 75        | 74                             |
| Surrogate Compounds                                                               |           |       | Recov   | ery Limit | S                              |
| S1 = Tetrachloro-m-xylene                                                         |           |       | 26-132% |           |                                |
| S2 = Decachlorobiphenyl                                                           |           |       | 10-118  |           |                                |
| (a) Recovery from GC signal #1                                                    |           |       |         |           | (b) Recovery from GC signal #2 |
| (c) Outside control limits due to matrix interference with the internal standard. |           |       |         |           |                                |

Note: Surrogate recoveries within laboratory control limits in the two columns except in sample JC22206-8. Sample re-analyzed and surrogate recoveries within

laboratory control limits. No action taken.

#### Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.

- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
  - i. Qualify detected target compounds as biased low (J-).
  - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

# Summary Surrogate Actions for Pesticide Analyses

|                                         | Action*                      |                                  |  |  |
|-----------------------------------------|------------------------------|----------------------------------|--|--|
| Criteria                                | Detected Target<br>Compounds | Non-detected Target<br>Compounds |  |  |
| %R > 150%                               | J+                           | No qualification                 |  |  |
| 30% < %R < 150%                         | No qualification             |                                  |  |  |
| 10% < %R < 30%                          | J-                           | UJ                               |  |  |
| %R < 10% (sample dilution not a factor) | J-                           | R                                |  |  |
| %R < 10% (sample dilution is a factor)  | Use professional judgment    |                                  |  |  |
| RT out of RT window                     | Use professional judgment    |                                  |  |  |
| RT within RT window                     | No qualification             |                                  |  |  |

Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

| Il criteria were metX |
|-----------------------|
| Criteria were not met |
| and/or see below      |

# MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

## MS/MSD Recoveries and Precision Criteria

List the %Rs. RPD of the compounds which do not meet the criteria.

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

**NOTE:** For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

| Sample ID:JC22206-9MS/MSD |          |     |     | Matrix/Level:Groundwater |        |  |
|---------------------------|----------|-----|-----|--------------------------|--------|--|
| MS OR MSD                 | COMPOUND | % R | RPD | QC LIMITS                | ACTION |  |
|                           |          |     |     |                          |        |  |
|                           |          |     |     | -                        |        |  |

**Note:** MS/MSD sample analyzed with this data package. % recoveries and RPD within laboratory control limits.

#### Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

| All criteria were met _X_ |  |
|---------------------------|--|
| Criteria were not met     |  |
| and/or see below          |  |

# LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

## 1. LCS Recoveries Criteria

| LCS Spike Compound               | Recovery Limits (%) |
|----------------------------------|---------------------|
| gamma-BHC                        | 50 – 120            |
| Heptachlor epoxide               | 50 – 150            |
| Dieldrin                         | 30 – 130            |
| 4,4'-DDE                         | 50 – 150            |
| Endrin                           | 50 – 120            |
| Endosulfan sulfate               | 50 – 120            |
| trans-Chlordane                  | 30 – 130            |
| Tetrachloro-m-xylene (surrogate) | 30 – 150            |
| Decachlorobiphenyl (surrogate)   | 30 – 150            |

| LC          | S concentrations | :0.25_ug/l;                   |     | <del></del> |
|-------------|------------------|-------------------------------|-----|-------------|
| List the %R | of compounds w   | hich do not meet the criteria | a a |             |
|             | LCS ID           | COMPOUND                      | % R | QC LIMIT    |
|             |                  |                               |     |             |
|             |                  |                               |     |             |
|             |                  |                               |     |             |
|             | 10/2 (#27        |                               | ·   |             |

#### Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.
- e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

# 2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

**Note:** Blank spike analyzed for aqueous matrix. % recoveries within laboratory control limits. Recovery for gamma-chlordane obtained from second column, first column used for confirmation only.

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowN/A   |

## FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

#### Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

N/A

#### Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

## Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note: No information for florisil cartridge performance check included in data package. There is evidence tahtFlorisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

| All criteria were metN/A |  |
|--------------------------|--|
| Criteria were not met    |  |
| and/or see below         |  |

# GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

## Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

| All criteria were met | _X |
|-----------------------|----|
| Criteria were not met |    |
| and/or see below      |    |

## TARGET COMPOUND IDENTIFICATION

## Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns? Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT  $\pm 0.05$  minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within  $\pm 0.10$  minutes of the RT determined from the initial calibration? Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of ± 25.0 %?

  Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

  Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

  Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No?
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

  Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

  Yes? or No?

## Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following guidance:
  - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

## GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

# Action:

- a. If the quantitative criteria for both columns were met ( $\geq$  5.0 ng/µL for SCPs and  $\geq$  125 ng/µL for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
  - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
  - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

| All criteria were met | _X |
|-----------------------|----|
| Criteria were not met |    |
| and/or see below      |    |

# COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

## Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

# Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

| Criteria                 | Action                        |                                   |  |
|--------------------------|-------------------------------|-----------------------------------|--|
|                          | Detected Associated Compounds | Non-detected Associated Compounds |  |
| % Moisture < 70.0        | 1                             | lo qualification                  |  |
| 70.0 < % Moisture < 90.0 | J                             | UJ                                |  |
| % Moisture > 90.0        | J                             | R                                 |  |

| ples which have ≤ 50 % solids |      |  |
|-------------------------------|------|--|
|                               | <br> |  |
|                               | -    |  |
|                               | <br> |  |

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

# Dilution performed

| SAMPLE ID | DILUTION FACTOR | REASON FOR DILUTION |
|-----------|-----------------|---------------------|
| JC22206-8 | 5 X             | MATRIX INTERFERENCE |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
| -         |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |

| All criteria were metN/A |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

## FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

| Sample II                                                                                                                                                    | Os:         | <del>-</del>    |                 | Matrix: | <del>-</del> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|-----------------|---------|--------------|
| COMPOUND                                                                                                                                                     | SQL<br>ug/L | SAMPLE<br>CONC. | DUPLICATE CONC. | RPD     | ACTION       |
| No field/laboratory duplicate analyzed with this data package. MS/MSD % recoveries RPD used to assess precision. RPD within the required criteria of < 50 %. |             |                 |                 |         |              |
|                                                                                                                                                              |             |                 |                 |         |              |

#### Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
  - i. If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
  - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
  - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
  - iv. If both sample and duplicate results are not detected, no action is needed.

# OVERALL ASSESSMENT OF DATA

## Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data:

Results are valid; the data can be used for decision making purposes.